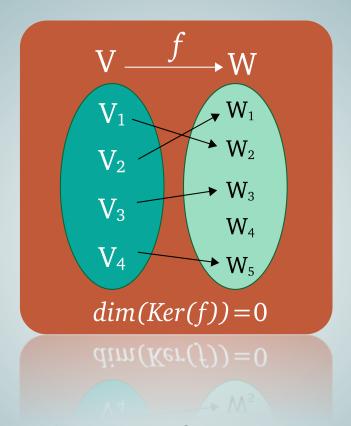


Álgebra

Problemas Tema 3. Espacios vectoriales



Rodrigo García Manzanas Neila Campos González Ana Casanueva Vicente

Departamento de Matemática Aplicada y Ciencias de la Computación

Este tema se publica bajo Licencia:

Creative Commons BY-NC-SA 4.0

G320: Álgebra

Tema 3: Espacios vectoriales

- 1) En el espacio vectorial $\mathbb{M}_{2\times 2}$ (matrices 2×2 con términos reales), ¿forman un subespacio las siguientes matrices?
 - a) $\begin{pmatrix} a & b \\ 2b & c \end{pmatrix}$
 - b) $\begin{pmatrix} a & b^2 \\ b & c \end{pmatrix}$
- 2) Determina si los siguientes conjuntos de vectores son libres o ligados:
 - a) $\{(1,0,1),(2,0,3),(-1,0,4)\}$ en \mathbb{R}^3
 - b) $\{(1,2),(3,-1),(5,0),(1,-2)\}$ en \mathbb{R}^2
- 3) Dado el subespacio de \mathbb{R}^5 en forma paramétrica $S = \{(a, a+b, a+b+c, c, 2a-b) : a, b, c \in \mathbb{R}\}$, obtén un sistema generador del mismo
- 4) Halla una base y la dimensión del siguiente subespacio de \mathbb{R}^4 : $\{x+y+z+t=0, y-2z-t=0\}$
- 5) a) Determina si los vectores $\{(1,2,3),(4,5,6),(3,3,3)\}$ forman base de \mathbb{R}^3
 - b) Determina si los vectores $\{(1,0,1),(-1,0,2)\}$ forman base del subespacio $\{y=0\}$ de \mathbb{R}^3
- 6) Extiende el siguiente conjunto de vectores hasta formar una base de \mathbb{R}^4 : $\{(2,3,0,1),(0,2,0,0)\}$
- 7) Dadas las bases $B = \{(1,0), (0,1)\}$ y $B' = \{(0,-1), (1,2)\}$, halla:
 - a) la matriz de cambio de base de B' a B
 - b) la matriz de cambio de base de B a B'
 - c) las coordenadas del vector (-3, -8) en la base B'
- 8) En \mathbb{R}^4 , si S tiene como sistema generador $\{(1,1,0,0),(1,-1,0,0)\}$ y T tiene como sistema generador $\{(0,2,1,0),(-1,1,1,0)\}$, halla:
 - a) un sistema generador del subespacio S+T
 - b) una base de S+T
- 9) Dados los subespacios $S=\{x+y-z-t=0,2x+2y-z-t=0\}$ y $T=\{x-y=0,z-t=0\}$ en \mathbb{R}^4 , calcula:
 - a) el subespacio $S \cap T$
 - b) el subespacio S + T
- 10) Determina si los siguientes subespacios están o no en suma directa:
 - a) $S = \langle (1, 2, 0, 0), (1, 0, 0, 2) \rangle$ y $T = \langle (0, 0, 2, 1), (2, 0, 0, 1) \rangle$ en \mathbb{R}^4
 - b) $S = \langle (1,2,0), (1,0,2) \rangle$ y $T = \langle (0,2,1), (2,0,1) \rangle$ en \mathbb{R}^3
- 11) Halla un subespacio suplementario de $\{(1,2,3),(4,5,6)\}$ en \mathbb{R}^3