

Chemical Process Design / Diseño de Procesos Químicos

Topic 3.1. Overview of process synthesis

Javier R. Viguri Fuente Eva Cifrian Bemposta

Department of Chemistry and Process & Resource Engineering GER Green Engineering and Resources Research Group

> This work is published under a License: <u>Creative Commons BY-NC-SA 4.0</u>

INDEX

1.- Preliminary Process Synthesis

2.- Basic Steps in flowsheet synthesis

- **2.1.- Gathering Information**
- **2.2.- Representing Alternatives**
- 2.3.- Criteria for Assessing preliminary design
- **3.- Generation of flowsheets**
 - **3.1.- Hierarchical decomposition**
 - **3.2.- Process Integration and Intensification**
 - Case Study: application of hierarchical decomposition
 - **3.3.- Superstructure optimization**
 - Examples: HEN, Distillation, Waste treatment network
- **4.- Further Reading and References**
- **5.- Relevant to learning**

1.- Preliminary Process Synthesis

Steps in process synthesis: Process operations \rightarrow unit Processes \rightarrow Global Flowsheets.

- -<u>Material Chemical State</u>: Raw material and product. specifications (Mass, composition, phase, form of solid phase, *T*, *P*, well-defined properties such as *m*, MW or color).
- <u>Process Operations</u>: Basic operations, connected + *task integration,* where operations are combined in <u>Unit Processes</u>.
- -<u>Unit Processes</u>: that connected create the *global Flowsheet*.

2.- Basic Steps in flowsheet synthesis

2.1.- Gathering Information and Database creation:

- Basic thermo-physical properties for all chemicals considered.
- Information about reaction and conditions.
- Yield.
- Product purity.
- Raw materials.
- Process bounding (restrictions).
- Utilities.
- Environmental Impact and toxicity of components.
- Cost of equipment, utilities and subproducts. Chemical prices.

Reactor Performance

2.- Basic Steps in flowsheet synthesis

2.2.- Representing Alternatives:

- AGREGATION IN A SINGLE OBJECT.
- EQUIPMENT AGREGATION REPRESENTING A FUNCTION OF HIGHER LEVEL like: Feed preparation, reaction, recovery, separation.
- **COMPLETE FLOWSHEET:** Equipment and inter-connection:
 - Block Flow Diagram (BFD). Process Flow Diagram (PFD). Flowsheet \rightarrow Unit operations.
 - Task Diagram (Change of P, T, Comp.) → Batch Processes where all the tasks are developed in the same equipment but at different times.
- MORE SPECIALISED REPRESENTATIONS: (Process Subsystems): T vs. Transferred Heat amount. Allow to obtain alternatives to the heat exchange between streams, minimum heat and cool utilities, etc., in the HEN (Heat Exchange Networks).
- REPRESENTATION OF THE PROCESS TRANSITIONS IN THE SPACE OF CHEMICAL COMPOSITION: Useful to synthesis of reactor networks and non-ideal separation processes.
- **OTHER REPRESENTATIONS:** Useful to think about the design problem. Describe design alternatives.

2.- Basic Steps in flowsheet synthesis

2.3.- Criteria for Assessing preliminary design:

• EQUIPMENT AGREGATION REPRESENTING A FUNCTION OF HIGHER LEVEL:

Need \rightarrow Equipment and utilities Cost. Mass and heat balances solved.

• ENVIRONMENTAL CONCERNS:

Need \rightarrow Satisfy regulations / EIA / LCA / CF.

• SAFETY ANALYSIS:

Determine whether any reasonable combination of events leads to unsafe situations. HAZOP Analysis.

• FLEXIBILITY:

Requires \rightarrow manufacture of specified products in spite of variations in the feeds it handles (\$, supply), T cooling water, heat transfer coefficient.

Oil Refinery: Earnings = F (capacity of process different oils at different time + scheduling).

CONTROLLABILITY:

Ability of operate the process satisfactorily while undergoing dynamic changes in operation conditions, or while recovering from disturbances.

Exhaustive enumeration \rightarrow may involve 10³ – 10⁶ flowsheets

→ Methods to reject non-viable alternatives easy and quickly:

- Hierarchical Decomposition:
 - Order or levels of decisions:
 - + Much simpler.
 - + Obtaining flowsheets to apply optimization.
 - Successive Refinement.
 - Ignore some strong interactions between the levels.
- <u>Superstructure optimization</u>:
 - Optimize superflowsheet that contains all alternatives:
 - + Interactions between levels can be considered systematically (with more powerful strategies).
 - Much more complicated.

- **3.1.- Hierarchical Decomposition:**
 - 1.- Consider several levels of decisions:
 - Level 1. Batch vs. Continuous.
 - Level 2. Input-output structure (Economic Potential).
 - Level 3. Recycle structure \rightarrow main decision is the Reactor.
 - Level 4. Separation Synthesis: a) Vapor recovery.
 - b) Liquid recovery.
 - Level 5. Heat Recovery.

3.1.- Hierarchical Decomposition:

The "Onion diagram"

- 2.- <u>Develop alternatives</u>: starting from the highest level.
 - It's economic potential at any level
 < 0 → STOP.
 - Otherwise continue until finding feasible base case.
 - Evaluate using shortcut techniques.

3.2.- Generation of flowsheets: Integrated Chemical Processes:

 Integration of unit operations → to design multifunctional integrated chemical manufacturing systems.

Advantages/Challenges of process integration:

- Higher productivity.
- Higher selectivity.
- Reduced energy consumption. Improved op
 - Improved operational safety.
- Improved ecological harmlessness by avoidance of auxiliary agents and chemical waste.
- * Due to the interaction of several process steps in one apparatus (system), the steadystate and the dynamic operating behavior of an integrated process unit (system) is **much more complex** than the behavior of single, non-integrated units (systems).

3.2.- Generation of flowsheets: Integrated Chemical Processes

- The **aim** of **Process Intensification** is to optimize capital, energy, environmental and safety benefits by radical reduction in the physical size of the plant.
- **Development** of novel apparatuses and techniques, as compared to the present state-of-art, to bring about *dramatic* improvements in manufacturing and processing, substantially decreasing equipment size/production-capacity ratio, energy consumption, or waste production.

Advantages of process intensification:

- 99% reduction in impurity levels \rightarrow **Better product quality** \rightarrow more valuable.
- Just-in-time manufacture becomes feasible with ultra-short residence times.
- **Distributed** (rather than centralized) manufacture → more economic. 60% **capital cost** reductions.
- 70% reduction in **energy** usage and hence substantial reduction in **operating costs**.
- Lower waste levels reduce downstream purification costs.
- 99.8% reduction in **reactor volume** for a potentially hazardous process, leading to an inherently safe operation. **Smaller inventories** lead to improved intrinsic **safety**.
- Better control of process irreversibility's can lead to lower energy use.

3.3.- Superstructure Optimization

- Representation that contains all the alternatives to be considered for a design.
- Useful with a high number of alternatives.

State-Task Network (STN)

2 kinds of Nodes: State and Task. 1 Task in 1 Device.

State-Equipment Network (SEN)

2 kinds of Nodes: State and Equipment. Several Tasks in 1 Device.

- -Example 1: Heat exchange of H1 with C1, C2, C3 and H1, H2 with C1, C2.
- -Example 2: Wastewater treatment network.
- Example 3: Synthesis of ammonia plant

4.- Further Reading and References

- Biegler, L.; Grossmann, I. & Westerberg, A. (1997): *«Systematic methods of chemical process design»*. Prentice Hall.
- Douglas, J.M. (1988): «Conceptual design of chemical processes». McGraw-Hill.
- Floudas, C.A.; Ciric, A.R. & Grossmann, I.E. (1986): *«Automatic synthesis of optimum heat exchanger network configurations»*. AIChE Journal, 32 (2). Pp. 276-290.
- Galan, B. & Grossmann, I.E. (1998): *«Optimal design of distributed wastewaters treatment networks»*. Industrial and Engineering Chemistry Research, 37 (10). Pp. 4036-4048.
- Galán, B. & Grossmann, I.E. (2011): *«Optimal design of real world industrial wastewater treatment networks»*. European Symposium on Computer-Aided Process Engineering ESCAPE-21. E.N. Pistikopoulos, M.C. Georgiadis & A.C. Kokossis (Editors).
- Smith, R.M. (2005): *«Chemical process: design and integration»*. John Wiley & Sons.
- Yee, T.F. & Grossmann, I.E. (1990): *«Simultaneous optimization models for heat integration-II»*. Heat exchangers networks synthesis. Computers and Chemical Engineering, 14 (10). Pp. 1165-1184.

RELEVANT TO LEARNING

- Design problem vs. yield problem.
- Meaning of FLEXIBILITY as criteria for assessing preliminary design.
- What is process Integration? And process Intensification? Examples?
- Meaning, use and kind of Superstructures.
- Examples of hierarchical decomposition.
- Why is it useful to determine the maximum potential benefits when analyzing a process at the input-output structure level?