

Chemical Process Design / Diseño de Procesos Químicos

Topic 5.1. Equipment sizing and costing. Introduction

Javier R. Viguri Fuente Eva Cifrian Bemposta

Department of Chemistry and Process & Resource Engineering GER Green Engineering and Resources Research Group

This work is published under a License:

Creative Commons BY-NC-SA 4.0

INDEX

- 1.- Introduction
 - Categories of total capital cost estimates
 - Cost estimation method of Guthrie
 - Example of Equipment Cost Estimation
- 2.- Shortcut procedures for equipment sizing
 - Vessel (flash drums, storage tanks, decanters and some reactors)
 - Reactors
 - Heat transfer equipment (heat exchangers, furnaces and direct fired heaters)
 - Distillation columns
 - Absorber columns
 - Compressors (or turbines)
 - Pumps
 - Refrigeration
- 3.- Cost estimation of equipment Final Summary
 - Base costs for equipment units
 - Guthrie's modular method
- 4.- Further Reading and References

PRACTICAL CHAPTER

RELEVANT TO LEARNING

1.- Introduction

Process Alternatives Synthesis (candidate flowsheet).

Analysis (Preliminary mass and energy balances).

SIZING (Sizes and capacities).

COST ESTIMATION (Capital and operation).

Economic Analysis (economic criteria).

SIZING

Calculation of all physical attributes that allow a unique costing of this unit:

- Capacity, Height. - Pressure rating.

- Cross-sectional area. - Materials of construction.

Shortcut, approximate calculations (correlations) → Quick obtaining of sizing parameters -> Order of magnitude estimated parameters.

COST

- Total Capital Investment or Capital Cost: Function of the process equipment -> The sized equipment will be costed.
 - * Approximate methods to estimate costs.
- Manufacturing Cost: Function of process equipment and utility charges.

Categories of total capital cost estimates Based on accuracy of the estimate

ESTIMATE	BASED ON	Error (%)	Obtaining	USED FOR
ORDER OF MAGNITUDE (Ratio estimate)	Method of Hill, 1956. Production rate and PFD with compressors, reactors and separation equipment. Based on similar plants.	40 – 50	Very fast	Profitability analysis
STUDY	Overall Factor Method of Lang, 1947. Mass & energy balance and equipment sizing.	25 – 40	Fast	Preliminary design
PRELIMINARY	Individual Factors Method of Guthrie, 1969, 1974. Mass & energy balance, equipment sizing, construction materials and P&ID. Enough data to budget estimation.	15 – 25	Medium	Budget approval
DEFINITIVE	Full data but before drawings and specifications.	10 – 15	Slow	Construction control
DETAILED	Detailed Engineering.	5 – 10	Very slow	Turnkey contract

Cost Estimation Method of Guthrie

- Equipment purchase cost: Graphs and/or equations.
 - Based on a power law expression: Williams Law $C = BC = Co (S/So)^{\alpha} \rightarrow$ Economy of Scale (incremental cost C, decrease with larger capacities
 - S, due to the value of α < 1).
- Installation: Module Factor, MF, affected by BC, taking into account labor, piping instruments, accessories, etc.

```
Typical Values 1 < MF < 4.23.
```

```
Installation = (BC)(MF) - BC = BC(MF - 1)
```

• For special materials, high pressures and special designs beyond base capacities (So) and costs (Co), the Materials and Pressure correction Factors, MPF, are defined.

Uninstalled Cost = (BC)(MPF) Total Installed Cost = BC (MPF + MF - 1)

Materials and Pressure correction Factors: MPF

Empirical factors that modified BC and evaluate particular instances of equipment beyond a basic configuration: Uninstalled Cost = (BC x MPF).

$$MPF = \phi (F_d, F_m, F_p, Fo, F_t)$$

F_d: Design variation.

F_n: Pressure variation.

F_i: Mechanical refrigeration factor.

F_m: Construction material variation.

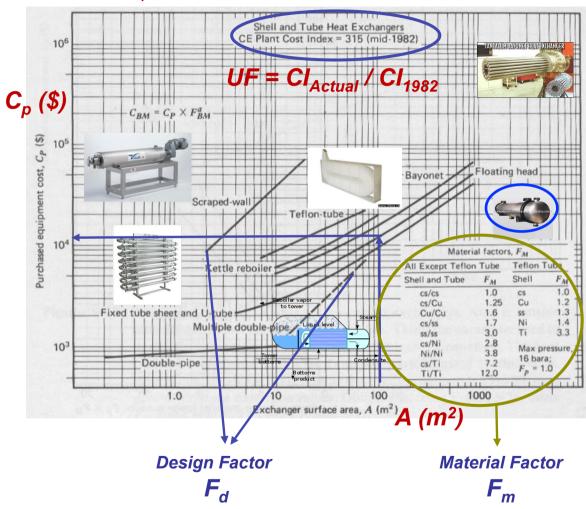
 F_0 : Operating Limits (ϕ of T, P).

 ϕ (T evaporator).

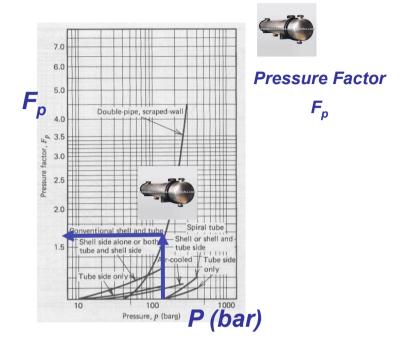
EQUIPMENT	MPF	
Pressure Vessels	F _m · F _p	
Heat Exchangers	$F_{m} (F_{p} + F_{d})$	
Furnaces, direct fired heaters, Tray stacks	$F_m + F_p + F_d$	
Centrifugal pumps	F _m · F _o	
Compressors	F _d	

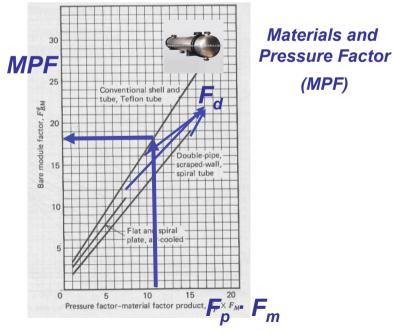
To obtain the COST(C) of the equipment \rightarrow Need \leq (Sizing) and \leq MPF (Operation Conditions) \rightarrow required the flowsheet mass and energy balance (Flow, T, P, Q).

Cost Estimation Method of Guthrie


• To update cost from mid-1968 (Co and So), an Update Factor UF, to account for inflation, is applied.

UF: Present Cost Index / Base Cost index.


Updated bare (simple) module cost: BMC = UF(BC) (MPF + MF - 1)


An example of Cost Estimation: Shell and Tube Heat Exchangers

Equipment purchase price C_p

Total Cost = $UF \cdot C_p \cdot MPF$

