



## **Environmental Technology in Mining**

#### CHAPTER 3.1.1.2 WATER POLLUTION



Carlos Rico de la Hera Rubén Díez Montero Ana Lorena Esteban García DPTO. DE CIENCIAS Y TÉCNICAS DEL AGUA

Y DEL MEDIOAMBIENTE

Este tema se publica bajo Licencia: <u>Creative Commons BY-NC-SA 4.0</u>



# INDEX

- 1) Water pollution
- 2) Types of water pollution Organic matter
  - Nutrients
  - Solids
  - Toxics
  - Microbiological characteristics
  - Emerging contaminants

# INDEX

#### 1) Water pollution

- 2) Types of water pollution Organic matter
  - Nutrients
  - Solids
  - Toxics
  - Microbiological characteristics
  - Emerging contaminants

## Water pollution



## Water pollution

#### • Impurities:

Substances in water other than  $H_2O$  (usually refer to natural substances)

#### • Pollution:

Presence in water of foreign substances that lower its quality  $\rightarrow$  constitute a health hazard or impair the usefulness of water (drinking, bathing, cultivating shellfish, ...)

#### • Categories of impurities/pollution:

- Physical: turbidity, color, temperature, taste and odor
- Chemical: alkalinity, hardness, toxics and other compounds
- Microbiological: *indicators of fecal contamination*
- Radiological

# INDEX

1) Water pollution

#### 2) Types of water pollution

- Organic matter
- Nutrients
- Solids
- Toxics
- Microbiological characteristics
- Emerging contaminants

## Types of water pollution

- According to water receptor
  - Water pollution in rivers
  - Water pollution in lakes and reservoirs
  - Water pollution in estuaries
  - Groundwater pollution
  - Sea pollution

## Types of water pollution

- According to source:
  - Domestic wastewater (DWW) or sewage
    - Blackwater (water from toilets) + greywater
  - Municipal or urban wastewater
    - Domestic wastewater + industrial discharges + seepage water (+ urban runoff)
  - Industrial wastewater (including mining)
  - Livestock wastewater
  - Agricultural wastewater

## Types of water pollution

- According to pollutant
  - Oxygen-demanding material (≈ organic matter)
  - Nutrients
  - Solids
  - Toxics (metals, pesticides)
  - Emerging contaminants
  - Pathogenic Organisms
  - Heat

 Chemical organic compounds: contain C, O, H + N, P, S may be oxidized:

Organic matter 
$$+(O_2) => CO_2 + (residuals)$$

• Main effect on water:

## oxygen demand

- Dissolved oxygen (DO) depletion in water poses a threat to fish and other aquatic life
- Critical DO varies among species (e.g. higher for salmon than for carp

#### Measurement

• Indirect:

OM is oxidised and oxidant or subproducts are measured. Oxidation reaction:

## Organic matter + O<sub>2</sub> => CO<sub>2</sub> + (residuals)

- Thermal oxidation
- Chemical oxidation
- Biochemical oxidation

#### Thermal oxidation

• Based on the combustion of a sample at 950 °C

 $OM + O_2 + heat => CO_2 + H_2O + (residuals)$ 

#### Limitations:

- It also accounts for non oxidizable OM
- Inorganic carbon must be removed previously
- Total Organic Carbon TOC (mg C/L) Measures CO<sub>2</sub> released
- Total Oxygen Demand TOD (mg O<sub>2</sub>/L) Measures O<sub>2</sub> consumed

#### Chemical oxidation

Measures the oxygen equivalent of the OM that can be oxidized by a strong chemical oxidizing agent

$$OM + O_2 + oxidant => CO_2 + H_2O + (residuals)$$

Chemical oxygen demand COD mg O<sub>2</sub>/L

Oxidant: potassium dichromate Cr<sub>2</sub>O<sub>7</sub>K<sub>2</sub>

#### Limitations:

There may be differences between COD and TOD because:

- COD also accounts for inorganic matter (e.g. Fe<sup>++</sup>)
- COD cannot account for non chemically oxidizable OM (e.g. benzene)

#### For DWW COD = 250-1000 mg/L

#### Chemical oxidation

#### • Permanganate oxidability mg $O_2/L$

- Oxidant: potassium permanganate MnO<sub>4</sub>K
- For low contaminated natural waters

#### Biochemical oxidation

The oxidation of the OM is carried out by microorganisms that use OM as food source

 $OM + O_2 + microorganisms => CO_2 + H_2O$ 

Measures biodegradable OM

• Biochemical oxygen demand BOD mg O<sub>2</sub>/L

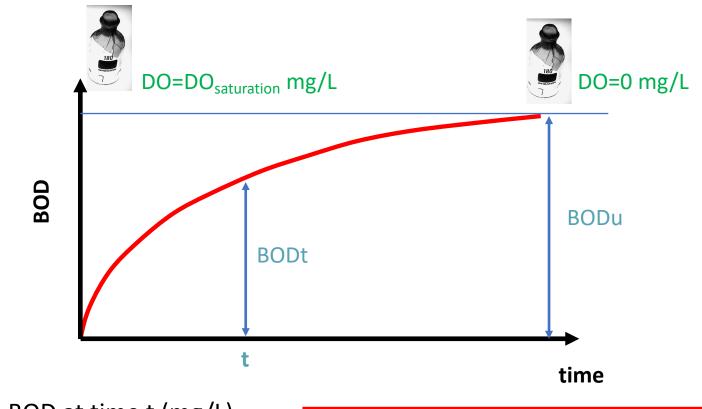
It usually refers to oxygen consumed after 5 days ( $BOD_5$ ) (because complete oxidation may take a long time)

For DWW:  $BOD_5 = 100-300 \text{ mg/L}$ 

#### BOD test

A water sample with enough oxygen is placed in a closed container (and inoculated with bacteria if needed). Oxygen consumption after a certain time is measured




Mameaw.piti, CC BY-SA 4.0 <https://creativecommons.org/licenses/bysa/4.0>, via Wikimedia Commons



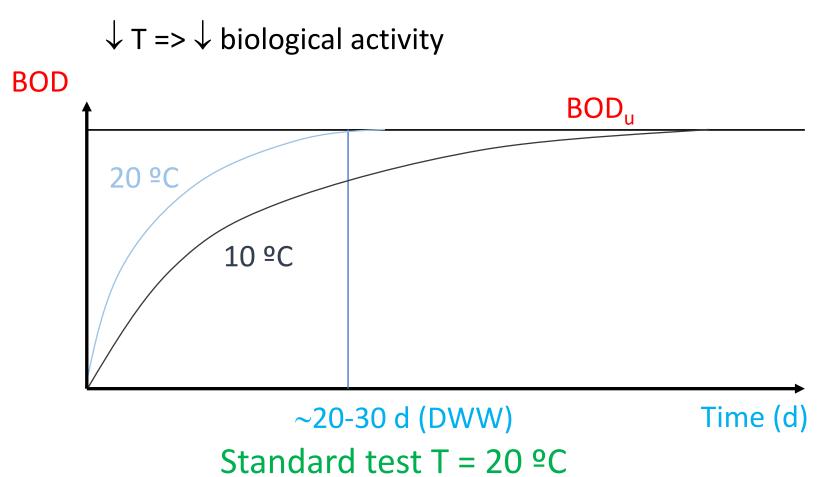
https://www.flickr.com/photos/23116228@N07/3231600029

**BOD bottles** 

• BOD test



 $BOD_t$ : BOD at time t (mg/L) BOD<sub>u</sub>: ultimate BOD (mg/L)  $k_{1:}$  reaction rate constant (d<sup>-1</sup>)


 $BOD_t = BOD_u (1 - e^{-k_1 \cdot t})$ 

• BOD test

#### **Typical values for the BOD rate constant**

| Sample               | $k (20^{\circ} \text{C}) \\ (\text{day}^{-1})$ |
|----------------------|------------------------------------------------|
| Raw sewage           | 0.35–0.70                                      |
| Well-treated sewage  | 0.12–0.23                                      |
| Polluted river water | 0.12–0.23                                      |

- Factors affecting BOD test
  - Temperature



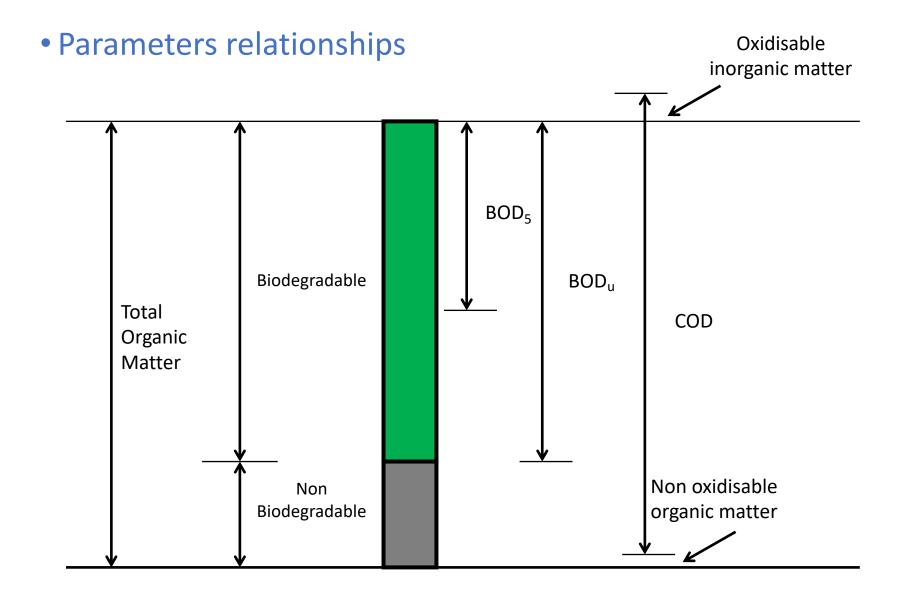
Factors affecting BOD test

• Light

If  $\exists$  light =>  $\exists$  algae =>  $O_2$  production

Standard test = darkness

- Microorganisms
  - If no ∃ microorganisms => inoculation is needed
  - BOD essay should be performed with acclimated organisms
  - For DWW => usually ∃ acclimated microorganisms


```
Standard test = inoculum of microorganisms
```

- Factors affecting BOD test
  - Dilution: If BOD > DO<sub>saturation</sub> (~ 9 mg/L) dilution is needed to have enough DO during the whole experiment

Ej:

to measure 90 mg/L, sample must be diluted at least 10 times to measure 900 mg/L, sample must be diluted at least 100 times

Standard test: -Preaeration of water - Sample dilution so that DO<sub>final</sub> > 0 mg/L



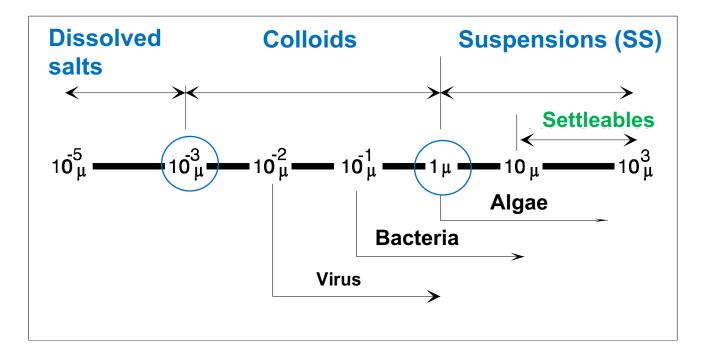
## Population equivalent (p.e.)

1 p.e. means the organic biodegradable load having a  $BOD_5$  of 60 g of oxygen per day (EU Directive urban waste water treatment)

Takes into account non domestic pollution sources. For instance:

1 cow = 10 p.e. 1 pig = 3 p.e.

The size of agglomerations is expresed in p.e.


Ej. The Waste Water Treatment Plant of Vuelta Ostrera is designed to treat 310,000 p.e.

## Nutrients

- Only pollutants when they are in excess (N, P)
- Impacts:
  - The food chain is disturbed (some organisms proliferate at the expense of others)
  - Example: excessive growth of algae in water bodies (eutrophication)
- Sources:
  - Phosphorus-based detergents
  - Fertilizers
  - Food processing wastes

**Remainder!** 

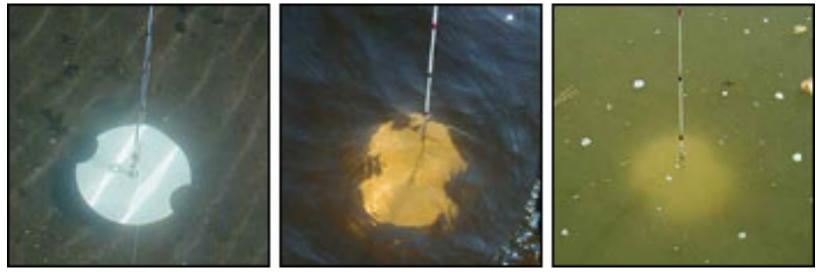
#### Types of solids in water



- One of the most important physical parameters to characterize water pollution
- The residue left after evaporation (coarse and floating matter are removed before analysis): everything that isn't a gas or doesn't evaporate.
- Includes salts, silt and clay, plankton, algae, fine organic debris and other organic and inorganic matter.

 Can be organic or inorganic; suspended or dissolved; settleable, colloidal and matter in solution.

• Expressed in mg/L


(Exception: Settleable solids in mL/L)

 Turbidity is an indirect way of measuring the suspended solids (nephelometer, NTU nephelometric turbidity units)

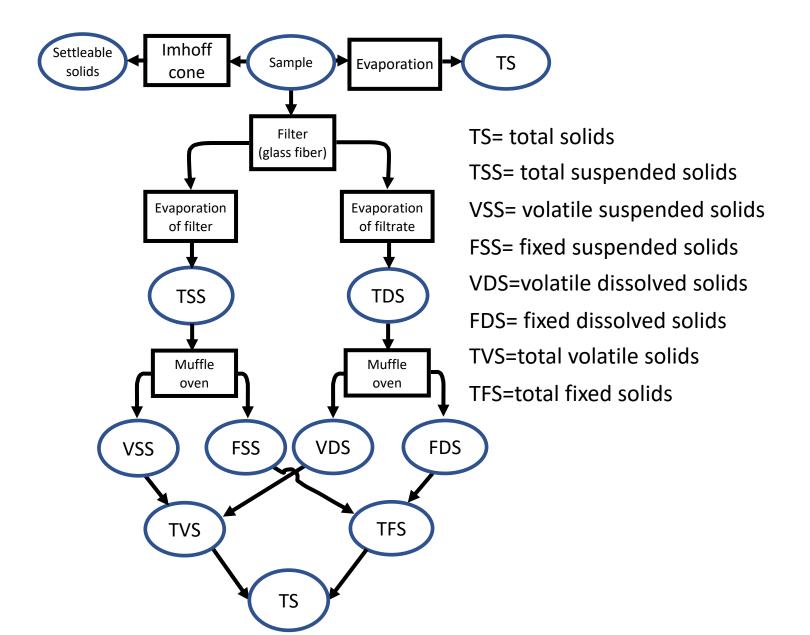
- Measurement of turbidity
  - Nephelometer [NTU]



 Secchi disc depth (clarity in big water bodies)[m]
Depth that a black and white Secchi disc cab be lowered into a body of water until visibility is lost.



https://www.fondriest.com/environmental-measurements/parameters/water-quality/turbidity-total-suspended-solids-water-clarity/


- Classified by:
  - Evaporation (105 °C)
    - Total Solids TS
  - Filtration (≈ 1µm pore size)
    - Total Suspended Solids TSS
    - Total Dissolved Solids TDS
  - Settling (Imhoff cone)
    - Settleable Solids
    - Non settleable solids
  - Ignition (500±5 °C) (Muffle oven)
    - Volatile Solids VS
    - Fixed Solids FS



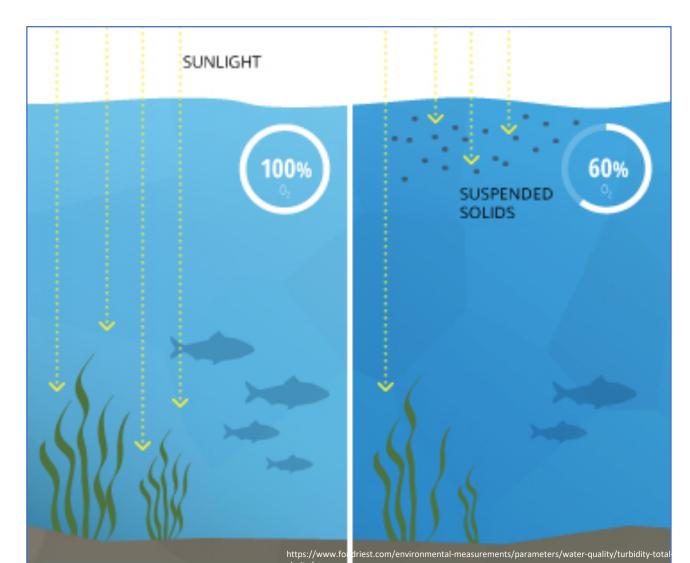








- Importance and meaning
  - Settleable solids:
    - Form sediments that can destroy ecological habitats (e.g. beds for salmon eggs)
    - Contribute to the blocking of pipes
  - TDS (mainly salts): water not useful for water supply or irrigation (crop and soil damage)
  - In general, VS are presumed to be organic matter, which can exert an oxygen demand


Organic matter + 
$$O_2 = > CO_2 + H_2O + ...$$
  
The concentration of  $O_2$  in water is reduced!

- Importance and meaning
  - Suspended solids must be removed from drinking water, because:
    - Viruses and bacteria are solids themselves
    - Pathogens can be carried on the surface of particles (SS are a shelter for microorganisms)
    - Turbidity reduces the aesthetic acceptability of drinking water

- Importance and meaning
  - Colloidal particles cause turbidity
    - Turbidity can block sunlight from reaching submerged plants and algae
      - Less photosynthesis => dissolved oxygen decreases
      - Vegetation die-off
        - => organic matter decomposition = dissolved oxygen decreases
        - => seaweed and underwater plants are food sources for aquatic organisms, and their population decreases



#### Importance and meaning



## Toxics

- Toxic inorganic substances:
  - Nitrates  $(NO_3^{-}) \rightarrow$  methemoglobinemia
  - Cyanides (CN)  $\rightarrow$  cyanosis
  - Heavy metals: As, Ba, Cd, Cr, Pb, Hg, Se, Ag → toxicity, cancer, anaemia, ...
- Toxic organic substances:
  - Pesticides, insecticides, solvents ...
  - Over 120 compounds

## **Microbiological Characteristics**

Pathogen: organism that causes disease:

→ viruses, bacteria, protozoa, helmints,

 $\rightarrow$  from fecal discharges of infected individuals or animals

#### Are difficult to indentify!!

Indicators of fecal contamination  $\rightarrow$  properties:

- Inhabitants of the intestinal tract
- Excreted in large quantities
- Survive in water for long periods of time
- Relatively easy to culture in the lab

E.g. Total Coliform test (colonies/100 mL)



## Emerging contaminants

 Any synthetic or naturally occurring chemical or microorganisms that is not commonly monitored in the environment and cause known or suspected adverse ecological and (or) human health effects.

• Types:

- Pharmaceuticals and Personal Care Products (PPCPs)
  - E.g. Analgesics, antibiotics, hygiene products...
- Endocrine-disrupting chemicals
  - E.g. estrogens, androgens, some pesticides.

# Chapter review (1/2)

- There are many types of water pollution, according to receptor, source and pollutant
- Organic matter:
  - The main effect on water is oxygen demand
  - Measured by oxidation: thermal (TOC, TOD), chemical (COD, permanganate oxidability), biochemical (BOD)
  - BOD test is affected by several factors (temperature, light, microorganisms, dilution)
  - Population equivalent (60 g of oxygen per day)



- Nutrients (N, P), eutrophication
- Solids
  - Turbidity; TS, TSS, TDS, VS, FS, settleable
  - There are many types of water pollution, according to receptor, source and pollutant
- Toxics, organic and inorganic
- Microbiological (Total Coliform test)
- Emerging contaminants