

Environmental Technology in Mining

CHAPTER 3.1.1.3 WATER AND WASTEWATER TREATMENT

Carlos Rico de la Hera Rubén Díez Montero Ana Lorena Esteban García DPTO. DE CIENCIAS Y TÉCNICAS DEL AGUA

Y DEL MEDIOAMBIENTE

Este tema se publica bajo Licencia: <u>Creative Commons BY-NC-SA 4.0</u>

Environmental Technology in Mining

Section 3 Environmental impact and restoration Chapter 3.1. Environmental Technology 3.1.1 Water management 3.1.1.3 Water and wastewater treatment

Group of Environmental Engineering Department of Water and Environmental Sciences and Technologies Universidad de Cantabria

INDEX

- 1) Water classification according to the source
- 2) Water quality standards
- 3) Water treatment Water treatment plants (WTP) Coagulation-flocculation Sedimentation Filtration Adsorption Membranes Disinfection
- Wastewater treatment
 Wastewater pollutants
 Wastewater treatment plants (WWTP)

INDEX

1) Water classification according to the source

- 2) Water quality standards
- 3) Water treatment Water treatment plants (WTP) Coagulation-flocculation Sedimentation Filtration Adsorption Membranes Disinfection
- Wastewater treatment
 Wastewater pollutants
 Wastewater treatment plants (WWTP)

Water classification according to the source

a) Groundwater:

- Deep wells
- Shallow wells

b) Surface water:

- Rivers
- Lakes or reservoirs
- Sea

Generally groundwater $\uparrow \uparrow$ quality than surface water

Water classification according to the source

General characteristics of groundwater and surface water

Ground	Surface
Constant composition	Varying composition
High mineralization	Low mineralization
Little turbidity	High turbidity
Low or no color	Color
Bacteriologically safe	Microorganisms present
No dissolved oxygen	Dissolved oxygen
High hardness	Low hardness
H ₂ S, Fe, Mn	Tastes and odors
	Possible chemical toxicity

INDEX

1) Water classification according to the source

2) Water quality standards

- 3) Water treatment Water treatment plants (WTP) Coagulation-flocculation Sedimentation Filtration Adsorption Membranes Disinfection
- Wastewater treatment
 Wastewater pollutants
 Wastewater treatment plants (WWTP)

Water Quality Standards

- Standards depend on the use of water: (Drinking, bathing, cultivating shellfish, etc.)
- Consider all types of pollutants

Physical, chemical, radiological and microbiological

- Drinking water standards:
 - Required parametric values (highest level allowed)
 - Indicator parameters: help to identify water treatment deficiencies (no direct public health impact)

DIRECTIVE (EU) 2020/2184 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 16 December 2020

on the quality of water intended for human consumption

INDEX

- 1) Water classification according to the source
- 2) Water quality standards

3) Water treatment

Water treatment plants (WTP) Coagulation-flocculation Sedimentation Filtration Adsorption Membranes Disinfection

Wastewater treatment
 Wastewater pollutants
 Wastewater treatment plants (WWTP)

The treatment processes will depend on:

- The source of water (initial characteristics)
- The quality to be achieved \rightarrow Water Quality Standards

POLLUTANT	PROCESS
Floating materials Big solids	Bar racks Screening Comminutors / Macerators
Sand, grit and similar particles	Sand, grit removal
Suspended solids Turbidity	Decantation Coagulation – Flocculation - Decantation Flotation Filtration

POLLUTANT	PROCESS
Recalcitrant organic matter	Activated carbon Oxidation
Dissolved solids (salts)	Chemical precipitation Adsorption Ion exchange Electrodialysis Reverse osmosis
Dissolved gases	Aeration Air stripping
Bacteria and other microorganisms	Chlorination Ozonation UV Radiation

WTP: water treatment plant (usually to produce drinking water)

Basic WTP alternatives:

- a. Simple chlorination
- b. (C-F-D) + Filtration + a.
- c. Softening (to remove hardness) + b. + a.

Flow diagram of a typical WTP

https://civiconcepts.com/blog/water-treatment-process

Water Treatment Plant of Torrelavega

Water Treatment Plant of Torrelavega

Coagulation - flocculation

The problema of colloids

COLLOIDS are small particles with:

- little weight
- large surface area
- electric surface charge

Give to water: Turbidity, color, bacteria, viruses

The problem of colloids

The problem of colloids

To remove colloids:

Reduce surface charge \rightarrow COAGULATION

+

Aggregate solids \rightarrow FLOCCULATION

+

Separate solids from water \rightarrow SETTLEMENT

+

Final removal of solids \rightarrow FILTRATION

Coagulation and flocculation

COAGULATION

FLOCCULATION

Coagulation and flocculation: design

• Key design factors \rightarrow Jar Test

- Optimum coagulant
- Need for coagulant aids
- Optimum Dose
- Optimum pH

Coagulation → process

• Objective:

Alter the stability of colloids so that they can approach and adhere to each other to form *flocs*

To reduce the surface charge

Introducing ions or polymers in water ("coagulants") + coagulant aids + rapid mixing

Flocculation -> process

• Objective:

Bring the particles into contact so that they collide, stick together and grow to a size that readily settles Slow mixing is required (avoid floc breakage)

Flocculation -> process

Coagulation vs. flocculation

Coagulation

Flocculation

Sedimentation

Objective of sedimentation = clarification

Removing particles that settle within a reasonable period of time

Diámetro de partícula (mm)	Tipo de sólido	Tiempo de sedimentación para 1 metro (orden de magnitud)
10	Grava	1 segundo
1	Arena	10 segundos
0.1	Arena fina	2 minutos
0.01	Arcilla	2 horas
0.001	Bacteria	8 días
0.0001	Partícula coloidal	2 años
0.00001	Partícula coloidal	20 años

In WTP to reduce turbidity before the filters. It is used with or without a previous coagulationflocculation stage

Elements of Sedimentation basins

= clarifier, settling tank, decanter

• Type of basins:

- Rectangular \rightarrow Horizontal flow
- Circular \rightarrow Upflow

Basin zones:

- Inlet \rightarrow Baffles, to evenly distribute the flow
- Outlet \rightarrow Weirs, to avoid "scouring" (washing out)
- Settling zone
- Sludge storage \rightarrow particules storage and removal

Zones in a horizontal flow clarifier

Zones in a circular clarifier

Analyzing the process: upflow settling tank

 v_o : "overflow rate" or "surface loading rate" (m³/d·m²) v_s : settling velocity (m/d)

The velocity of a liquid equals the flow rate divided by the cross section (v = Q/A)

Filtration

Introduction

- Purpose of filtration:
 - Usually required to reduce turbidity to less than the regulatory value

i.e. Spanish regulation:

Turbidity after WTP < 0,8 NTU

- Why such low turbidity is needed?
 - Turbid water is difficult to disinfect
 - Turbidity can cause deposits in the distribution system (=> tastes, odors and bacterial growths)

Filtration concept and mechanisms

- Process for separating suspended or colloidal impurities from water by passage through a porous medium
- Mechanisms of filtration:
 - *Straining:* particles bigger than the pores of the filter
 - Adsorption: solids become attracted to and "sticking" to the filter grains
 - Biological action

Biofilm -

Biodegradable matter

Loading rate

• Flow rate of water applied per unit area of the filter (or face velocity of the water)

$$v_a = \frac{Q}{A_s}$$

where
$$v_a$$
 = face velocity, m/d
= loading rate, m³/d · m²
 Q = flow rate onto filter surface, m³/d
 A_s = surface area of filter, m²

Rapid sand filters

• E.g: WTP of Santander. Sand filter battery

Rapid sand filters

• E.g: WTP of Santander. Filtering.

Rapid sand filters

• E.g: WTP of Santander. Backwashing.

Adsorption

- A substance is transferred from the liquid phase to the surface of a solid
- In water treatment: activated carbon
 - GAC: granular activated carbon
 - PAC: powdered activated carbon
- Main usages:
 - Taste and odor control
 - Removal of:

- SOC (synthetic organic contaminants): PCB, pesticides, dioxins...
- VOCs (volatile organic compounds)
- OM (organic matter)

Membranes

- Ability to separate materials
- Increasingly popular in water treatment

Membranes

Operating pressures (kPa)	700 200	70 35
Molecular range (daltons*)	200 1,000 100,000)
Size (µm)	0.001 0.01	0.1 ' 1.0 10 100 1,000
Relative size of various materials in water	Aqueous salts Humic acids Metal ions	es Bacteria Algae Cysts Sand Clays Silt Asbestos fibers
Separation processes	Reverse osmosis Nano- filtration Ultrafiltration	Microfiltration Conventional filtration processes

Disinfection

Disinfection methods

Physical treatment

- Solids removal (shelter for microorganisms)
 - Coagulation, flocculation, sedimentation, filtration.
- Heat
- Radiation
 - Ultraviolet (UV)
- Chemical treatment (oxidation)
 - Chlorination
 - Ozonation
 - Others (Cu, Ag, permanganate, ...)

Chlorine reactions in water

When chlorine is added to water:
 Cl₂ (g) + H₂O ⇐ HOCI + H⁺ +Cl⁻

Chlorine gas + water ⇔ hypochlorous acid + hydrochloric acid

$HOCI \Leftrightarrow H^+ + OCI^-$

hypochlorous acid \Leftrightarrow hydrogen ion + hypochlorite ion

- Disinfectants are:
 - HOCI (more powerful) and OCI⁻ (less powerful)
 - HOCI / CIO⁻ is pH dependent

INDEX

- 1) Water classification according to the source
- 2) Water quality standards
- Water treatment
 Water treatment plants (WTP)
 Coagulation-flocculation
 Sedimentation
 Filtration
 Adsorption
 Membranes
 - Disinfection

4) Wastewater treatment

Wastewater pollutants Wastewater treatment plants (WWTP)

Wastewater pollutants

- Chemical characteristics (pollutants)
 - Biochemical oxygen demand, BOD₅
 - Chemical oxygen demand, COD
 - Total Nitrogen, N
 - Total Phosphorus, P
 - Toxic compounds (industrial WW)
 - pH (industrial WW)
- Biological characteristics
 - E. coli
 - Fecal coliform bacteria

Wastewater treatment plant typical scheme (urban)

Wastewater treatment plant typical scheme (urban)

WWTP of Vuelta Ostrera (Suances)

Biological reactor (aeration tank) (WWTP of Santander)

Secondary clarifier (WWTP of Santander)

Chapter review (1/3)

- Water treatment will depend on water source and water quality standards.
- Typical water treatment plants (WTP) will have the following processes:
 - Removal of floating materials, big solids, sand and grit
 - Removal of colloids (difficult due to their stability): Coagulation-Flocculation-Sedimentation-Filtration
 - Disinfection
- Other processes: adsorption, membranes, ...

- Coagulation-Flocculation:
 - Jar test to obtain key design factors (optimum coagulant, dose and pH, need for coagulant aids)
- Sedimentation:
 - Design parameter: surface loading rate or overflow rate
 - Horizontal flow (rectangular) and vertical-upflow (circular)
- Filtration:
 - Straining, adsorption and biodegradation
 - Design parameter: loading rate or face velocity
- Disinfection: most common => chlorination (depends on pH)

- Typical Wastewater Treatment Plant (WWTP) (urban)
 - Pretreatment (\downarrow large solids, grit and grease)
 - Primary settling ($\downarrow \downarrow SS$, $\downarrow BOD$)
 - Biological treatment + Secondary settling ($\downarrow \downarrow \downarrow$ BOD)
 - Tertiary treatment (\downarrow N, P, Pathogens, Others)
 - Sludge treatment (from all the processes)