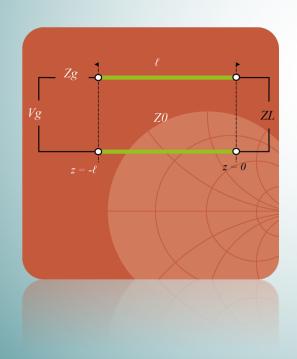


Medios de Transmisión Guiados

Tema 6. Adaptación de impedancias



Juan Luis Cano de Diego Óscar Fernández Fernández José Antonio Pereda Fernández

DPTO. DE INGENIERÍA DE COMUNICACIONES

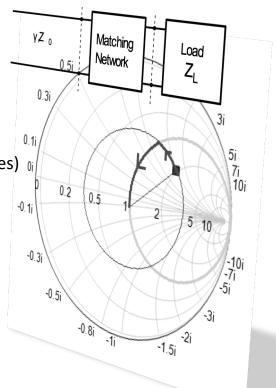
Este tema se publica bajo Licencia:

Creative Commons BY-NC-SA 4.0

Tema 6: Adaptación de Impedancias

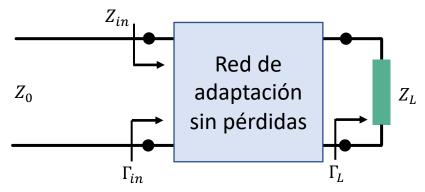
Índice de Contenidos

- 6.1 Introducción.
- 6.2 Adaptaciones serie y paralelo.
 - 6.2.1 Adaptación serie con elementos concentrados.
 - 6.2.2 Adaptación paralelo con elementos concentrados.
 - 6.2.3 Reactancias mediante elementos distribuidos (stubs simples) 0
- 6.3 Adaptación con redes en L y elementos concentrados.
 - 6.3.1 Soluciones analíticas.
 - 6.3.2 Soluciones sobre la carta de Smith.
- 6.4 Adaptación con doble stub.
 - 6.4.1 Solución doble stub sobre la carta de Smith.
 - 6.4.2 Solución doble stub analítica.
- 6.5 Transformador cuarto de longitud de onda.



6.1. Introducción

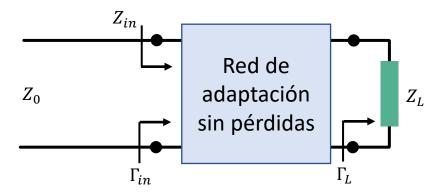
- La adaptación de impedancias consiste en diseñar una red que adapte una impedancia de carga (Z_L) a la impedancia de la línea de transmisión (Z_0) .
- La red de adaptación se sitúa entre la carga y la línea de transmisión.



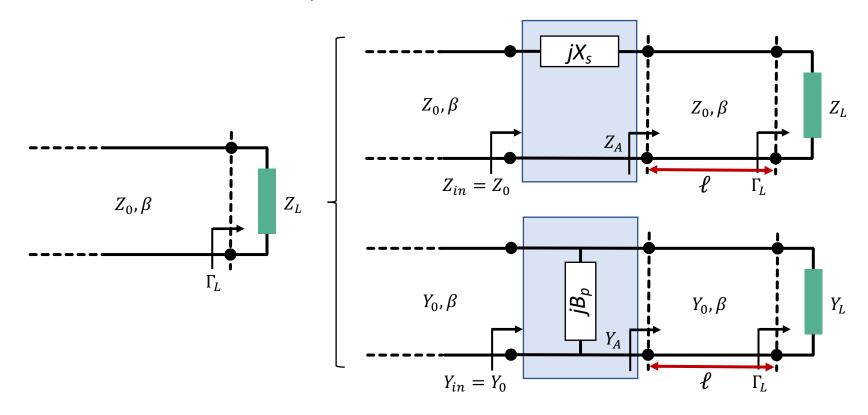
- El objetivo de la red de adaptación es conseguir que Γ_{in} = 0, es decir, Z_{in} = Z_0 , independientemente del valor de Z_L (Γ_L).
- Es importante adaptar porque, en su caso, permite la máxima transferencia de potencia (línea sin pérdidas)

6.1. Introducción

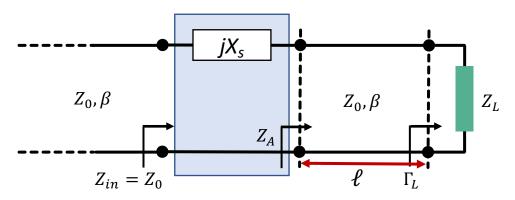
- Si $Re(Z_L) \neq 0 \rightarrow Siempre$ existe una red de adaptación
- Consideraciones sobre las redes de adaptación:
 - Complejidad: Habitualmente existe más de una solución. Es preferible la más simple (más barata, fácil de diseñar, menos pérdidas)
 - Ancho de banda: La adaptación perfecta sólo se consigue a una frecuencia. Conseguirlo en un ancho de banda determinado implica un aumento en la complejidad
 - Implementación: Depende del tipo de línea o medio de transmisión
 - Ajuste o sintonía: Imprescindible en redes de adaptación donde la impedancia de carga es variable



- La forma más sencilla de adaptar: Introducir un elemento reactivo en serie o paralelo
- Necesitamos calcular:
 - 1. Distancia a la carga, ℓ , donde insertar el elemento reactivo
 - 2. Valor del elemento X_s o B_p



6.2.1 – Adaptación serie con elementos concentrados



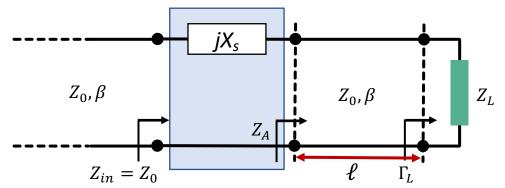
- Para conseguir la adaptación: Z_{in} = Z_0 , o normalizando \bar{Z}_{in} = Z_{in} / Z_0 = 1
- Esto se puede conseguir si el desplazamiento, ℓ , es tal que hace que la impedancia Z_A tenga la parte real Z_0 o, en términos normalizados:

$$\bar{Z}_A = \frac{Z_A}{Z_0} = 1 \pm j\bar{x}_A$$

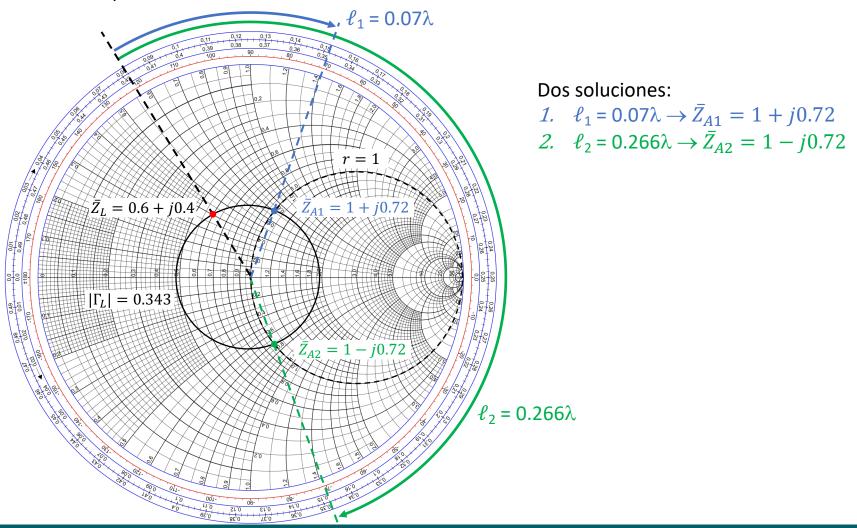
- Sobre la Carta de Smith, el círculo de $|\Gamma_L|$ corta al círculo de r=1 en dos puntos:
 - Dos soluciones: ℓ_1 y $\ell_2 \rightarrow \bar{Z}_{A1}$ y \bar{Z}_{A2}
 - Cada solución implicará un elemento reactivo serie diferente: $\bar{x}_{\scriptscriptstyle S} = -\bar{x}_{\scriptscriptstyle A}$ ó $\bar{x}_{\scriptscriptstyle S} = \bar{x}_{\scriptscriptstyle A}$

6.2.1 – Adaptación serie con elementos concentrados

• <u>Ejemplo</u>: Adaptar la carga $Z_L = 30+j20~\Omega$ mediante una línea de $Z_0 = 50~\Omega$ y un elemento reactivo serie a $f = 1~\mathrm{GHz}$



6.2.1 – Adaptación serie con elementos concentrados



6.2.1 – Adaptación serie con elementos concentrados

Solución 1:

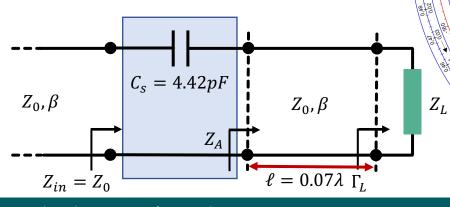
Reactancia serie $X_S = -\bar{x}_A \cdot Z_0$

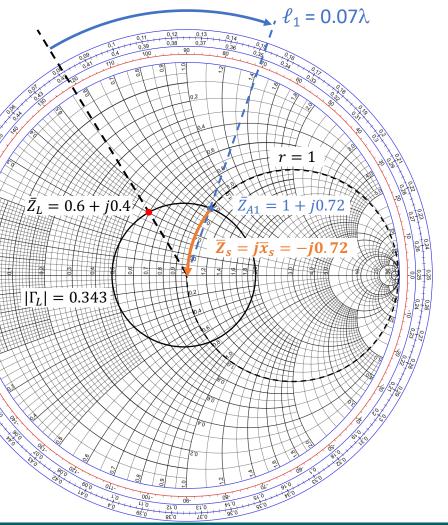
Reactancia serie negativa → solución capacitiva

Implementación con condensador

$$X_s = -\frac{1}{\omega C_s} = -\bar{x}_A \cdot Z_0 \to C_s = \frac{1}{\omega \cdot \bar{x}_A \cdot Z_0}$$

$$C_s = 4.42 \text{ pF}$$





6.2.1 – Adaptación serie con elementos concentrados

Solución 2:

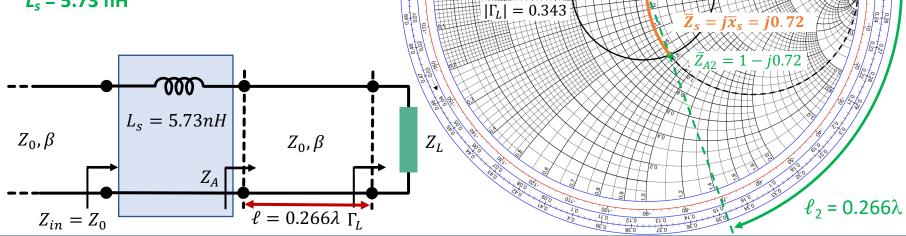
Reactancia serie $X_s = \bar{x}_A \cdot Z_0$

Reactancia serie positiva → solución inductiva

Implementación con bobina

$$X_S = \omega L_S = \bar{x}_A \cdot Z_0 \rightarrow L_S = \frac{\bar{x}_A \cdot Z_0}{\omega}$$

$$L_s = 5.73 \text{ nH}$$

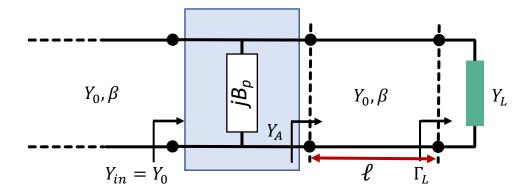


 $d\bar{Z}_L = 0.6 + j0.4$

r = 1

6.2.2 – Adaptación paralelo con elementos concentrados

- Desde un punto de vista práctico, las soluciones serie son difíciles y caras de implementar ya que requieren, en muchos casos, cortar la línea
- Alternativa: soluciones paralelo

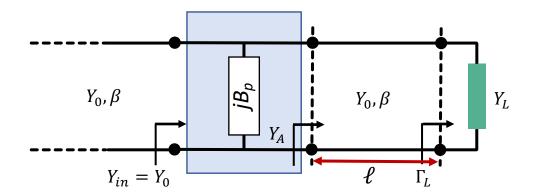


- Procedimiento idéntico al serie pero trabajando con la carta de Smith de admitancias
- Para conseguir la adaptación: $Y_{in} = Y_0$, o normalizando $\bar{Y}_{in} = \frac{Y_{in}}{Y_0} = 1$
- Esto se puede conseguir si el desplazamiento, ℓ , es tal que hace que la admitancia Y_A tenga la parte real Y_0 o, en términos normalizados:

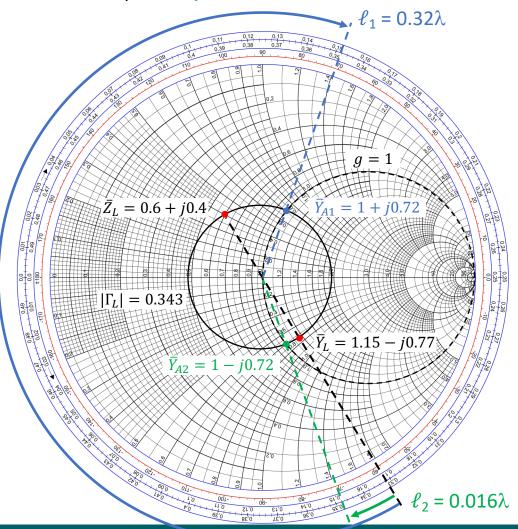
$$\bar{Y}_A = \frac{Y_A}{Y_0} = 1 \pm j\bar{b}_A$$

6.2.2 – Adaptación paralelo con elementos concentrados

• <u>Ejemplo</u>: Adaptar la carga Z_L = 30+j20 Ω mediante una línea de Z_0 = 50 Ω y un elemento reactivo paralelo a f = 1 GHz



6.2.2 – Adaptación paralelo con elementos concentrados



Sobre la Carta de Smith, el círculo de $|\Gamma_L|$ corta al círculo de g = 1 en dos puntos:

- Dos soluciones: ℓ_1 y $\ell_2 \rightarrow \overline{Y}_{A1}$ y \overline{Y}_{A2}
- Cada solución implicará un elemento reactivo parelelo diferente: $\bar{b}_p=-\bar{b}_A$ ó $\bar{b}_p=\bar{b}_A$

Dos soluciones:

1.
$$\ell_1 = 0.32\lambda \rightarrow \bar{Y}_{A1} = 1 + j0.72$$

2.
$$\ell_2 = 0.016\lambda \rightarrow \bar{Y}_{A2} = 1 - j0.72$$

6.2.2 – Adaptación paralelo con elementos concentrados

Solución 1:

Susceptancia paralelo $B_p = -\bar{b}_A \cdot Y_0$

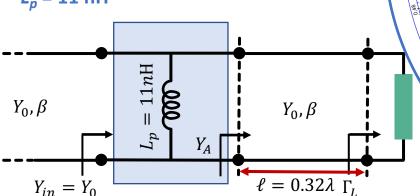
Susceptancia parelelo negativa → solución

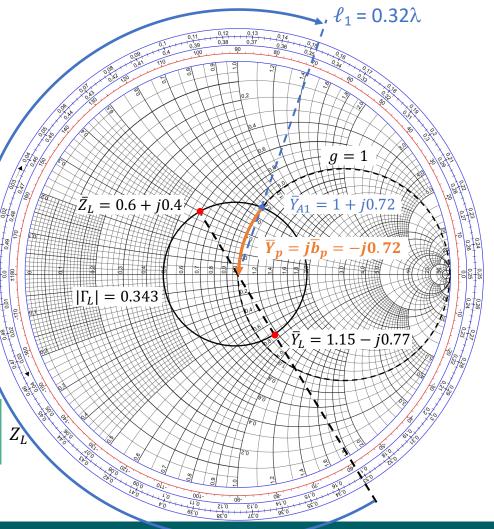
inductiva

Implementación con bobina

$$B_p = -\frac{1}{\omega L_p} = -\overline{b}_A \cdot Y_0 \to L_p = \frac{Z_0}{\omega \cdot \overline{b}_A}$$

 $L_p = 11 \text{ nH}$





6.2.2 – Adaptación paralelo con elementos concentrados

Solución 2:

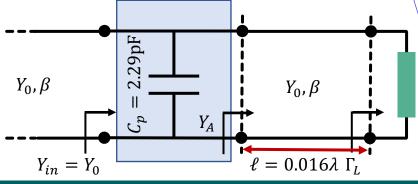
Susceptancia paralelo $B_p = \overline{b}_A \cdot Y_0$

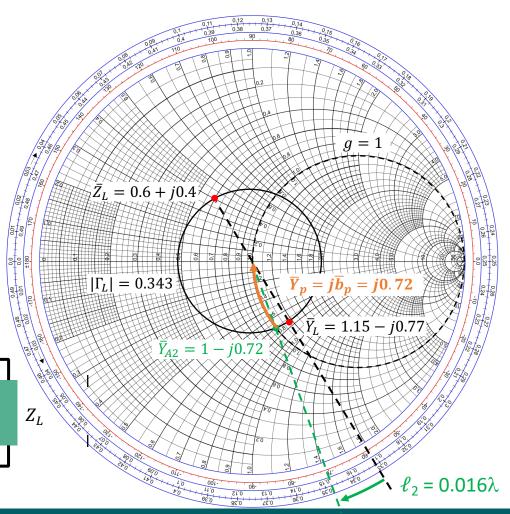
Susceptancia paralelo positiva → solución capacitiva

Implementación con condensador

$$B_p = \omega C_p = \overline{b}_A \cdot Y_0 \to C_p = \frac{\overline{b}_A \cdot Y_0}{\omega}$$

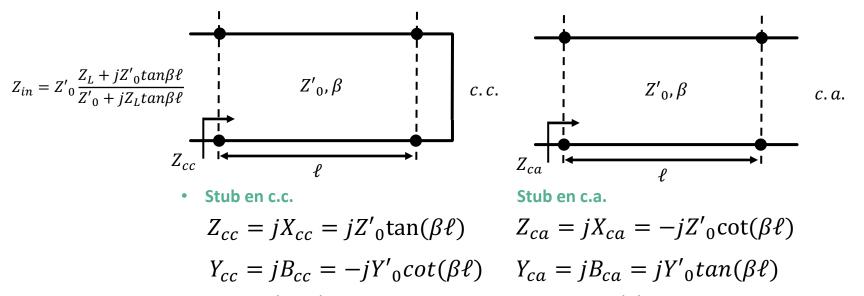
$$C_p = 2.29 \text{ pF}$$





6.2.3 – Reactancias mediante elementos distribuidos (stubs simples)

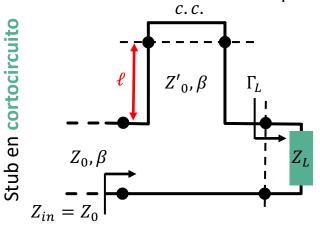
- En alta frecuencia los elementos concentrados (bobinas y condensadores) presentan notables efectos secundarios (parásitos) que desvirtúan su funcionamiento
- Los elementos reactivos se pueden implementar mediante componentes distribuidos
 - Tramos de línea terminados en c.c. o c.a. → stubs
- Pueden proporcionar cualquier valor de impedancia reactiva pura en función de su longitud

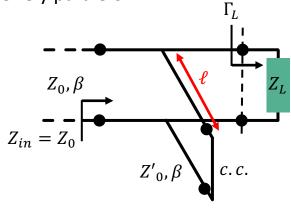


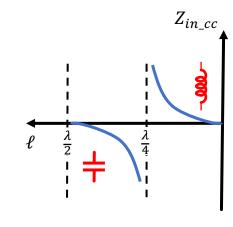
• Estas reactancias se pueden obtener con estructuras serie o paralelo

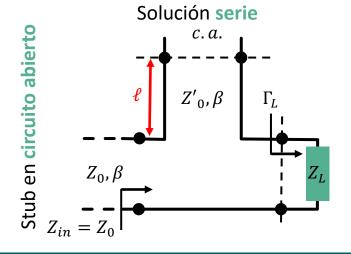
6.2.3 – Reactancias mediante elementos distribuidos (stubs simples)

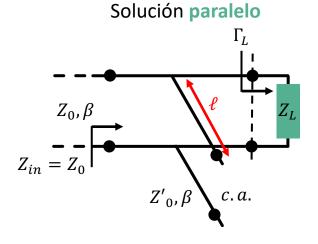
• Soluciones distribuidas de adaptación serie y paralelo

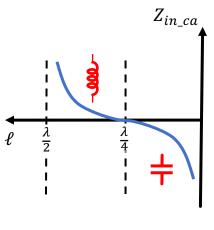






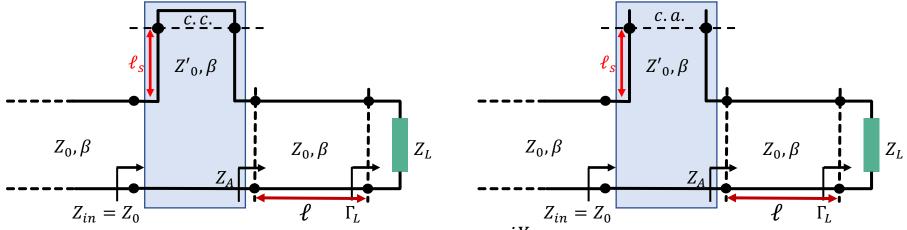






6.2.3 – Reactancias mediante elementos distribuidos (stubs simples)

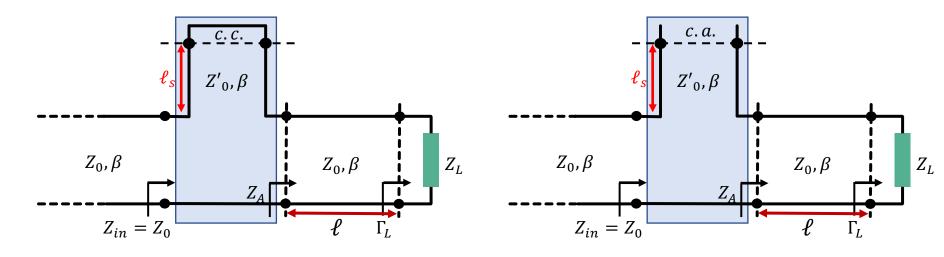
- Adaptación serie con elementos distribuidos (impedancias)
 - De la adaptación con elementos concentrados sabemos que vamos a tener dos posibles soluciones: ℓ_1 y ℓ_2
 - Además, como los stubs se comportan como bobinas/condensadores dependiendo de su longitud ℓ_s , cada una de las soluciones anteriores a su vez tiene dos posibles implementaciones, una con stub en c.c. y otra con stub en c.a.



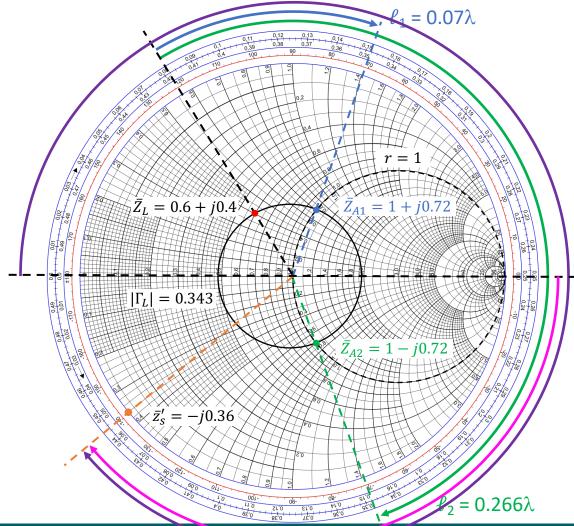
- Diseño stubs: Objetivo Z_{stub} = $\pm j \cdot X_A$ o \bar{z}_{stub} = $\pm \frac{j X_A}{Z_0'}$ (+/- depende de ℓ_1 o ℓ_2)
 - Si stub c.c. $\rightarrow \ell_S$ es la longitud entre Z = 0 y \bar{z}_{stub}
 - Si stub c.a. $\rightarrow \ell_S$ es la longitud entre Z = ∞ y \bar{z}_{stub}

6.2.3 – Reactancias mediante elementos distribuidos (stubs simples)

• <u>Ejemplo</u>: Adaptar la carga Z_L = 30+j20 Ω mediante una línea de Z_0 = 50 Ω y un stub serie de impedancia Z'_0 = 100 Ω



6.2.3 – Reactancias mediante elementos distribuidos (stubs simples)



Dos soluciones:

1.
$$\ell_1 = 0.07\lambda \rightarrow \bar{Z}_{A1} = 1 + j0.72$$

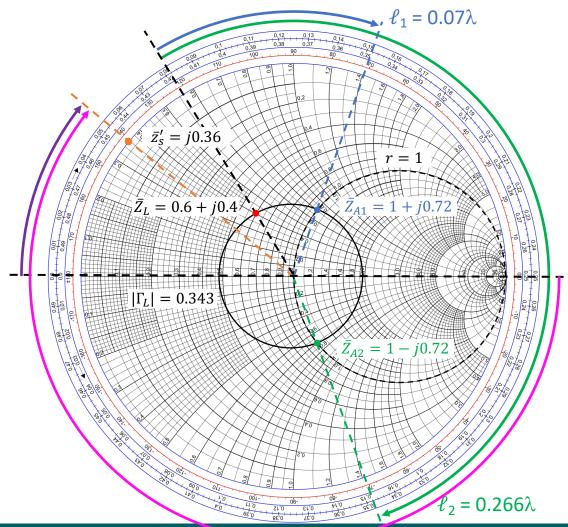
2.
$$\ell_2 = 0.266\lambda \rightarrow \bar{Z}_{A2} = 1 - j0.72$$

Diseño solución 1

Necesitamos implementar $\bar{x}_s = -\bar{x}_A$ ¡OJO! Hay que desnormalizar esta reactancia con Z₀ y volver a normalizar a Z'₀:

- 1. Desnormalizar: $Z_A = \bar{Z}_{A1} \cdot Z_0$ $Z_A = 50 + j36$
- 2. Renormalizamos: $\bar{z}_A' = {}^{Z_A}/{}_{Z_0'}$ $\bar{z}_A' = 0.5 + j0.36$
- 3. Implementamos $\bar{z}'_s = -j0.36$
- Stub c.c.: ℓ desde Z = 0 $\rightarrow \ell_s$ = 0.445 λ
- Stub c.a.: ℓ desde Z = 0 $\rightarrow \ell_s$ = 0.195 λ (Desplazamientos desde c.c. o c.a. hacia el generador)

6.2.3 – Reactancias mediante elementos distribuidos (stubs simples)



Dos soluciones:

1.
$$\ell_1 = 0.07\lambda \rightarrow \bar{Z}_{A1} = 1 + j0.72$$

2.
$$\ell_2 = 0.266\lambda \rightarrow \bar{Z}_{A2} = 1 - j0.72$$

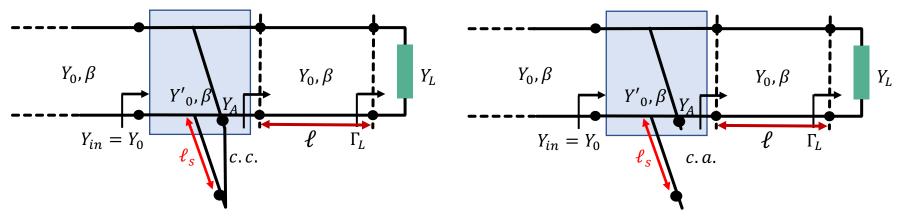
Diseño solución 2

Necesitamos implementar $\bar{x}_s = +\bar{x}_A$ ¡OJO! Hay que desnormalizar esta reactancia con Z₀ y volver a normalizar a Z'₀:

- 1. Desnormalizar: $Z_A = \bar{Z}_{A1} \cdot Z_0$ $Z_A = 50 - j36$
- 2. Renormalizamos: $\bar{z}_A' = {}^{Z_A}/{}_{Z_0'}$ $\bar{z}_A' = 0.5 - j0.36$
- 3. Implementamos $\bar{z}'_s = +j0.36$
- Stub c.c.: ℓ desde Z = 0 $\rightarrow \ell_s$ = 0.055 λ
- Stub c.a.: ℓ desde Z = $\infty \rightarrow \ell_s = 0.305\lambda$ (Desplazamientos desde c.c. o c.a. hacia el generador)

6.2.3 – Reactancias mediante elementos distribuidos (stubs simples)

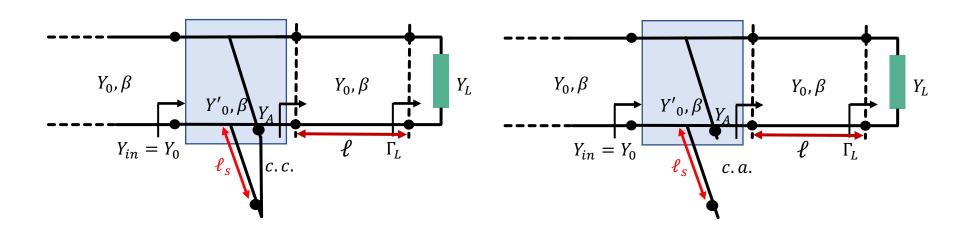
- Adaptación paralelo con elementos distribuidos (admitancias)
 - De la adaptación con elementos concentrados sabemos que vamos a tener dos posibles soluciones: ℓ_1 y ℓ_2
 - Además, como los stubs se comportan como bobinas/condensadores dependiendo de su longitud ℓ_s , cada una de las soluciones anteriores a su vez tiene dos posibles implementaciones, una con stub en c.c. y otra con stub en c.a.



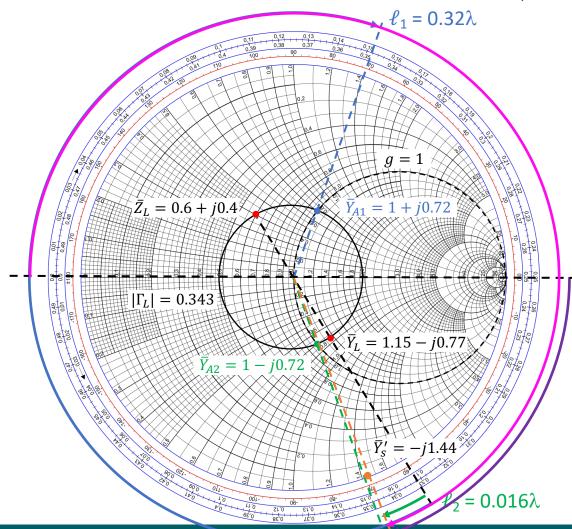
- Diseño stubs: Objetivo Y_{stub} = $\pm j \cdot B_A$ o \bar{y}_{stub} = $\pm \frac{jB_A}{Y_0'}$ (+/- depende de ℓ_1 o ℓ_2)
 - Si stub c.c. $\rightarrow \ell_S$ es la longitud entre Y = ∞ y \bar{y}_{stub}
 - Si stub c.a. $\rightarrow \ell_s$ es la longitud entre Y = 0 y \bar{y}_{stub}

6.2.3 – Reactancias mediante elementos distribuidos (stubs simples)

• <u>Ejemplo</u>: Adaptar la carga Z_L = 30+j20 Ω mediante una línea de Y_0 = 0.02 S y un stub paralelo de admitancia Y'_0 = 0.01 S



6.2.3 – Reactancias mediante elementos distribuidos (stubs simples)



Dos soluciones:

1.
$$\ell_1 = 0.32\lambda \rightarrow \bar{Y}_{A1} = 1 + j0.72$$

2.
$$\ell_2 = 0.016\lambda \rightarrow \overline{Y}_{A2} = 1 - j0.72$$

Diseño solución 1

Necesitamos implementar $\bar{b}_s = -\bar{b}_A$ ¡OJO! Hay que desnormalizar esta reactancia con Y₀ y volver a normalizar a Y'₀:

1. Desnormalizar:
$$Y_A = \overline{Y}_{A1} \cdot Y_0$$

 $Y_A = 0.02 + j0.0144 S$

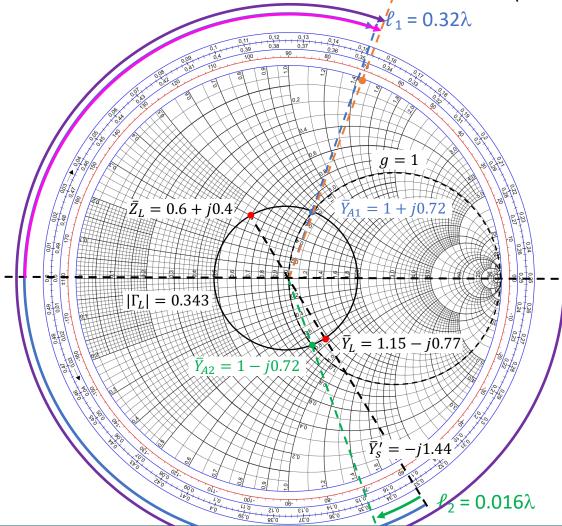
2. Renormalizamos:
$$\bar{Y}'_A = {^{Y_A}/_{Y'_0}}$$

 $\bar{Y}'_A = 2 + i1.44$

- 3. Implementamos $\bar{Y}'_s = -j1.44$
- Stub c.c.: ℓ desde Y = $\infty \rightarrow \ell_s = 0.096\lambda$
- Stub c.a.: ℓ desde Y = $0 \rightarrow \ell_s = 0.346\lambda$ (Desplazamientos desde c.c. o c.a. hacia el

generador)

6.2.3 – Reactancias mediante elementos distribuidos (stubs simples)



Dos soluciones:

1.
$$\ell_1 = 0.32\lambda \rightarrow \bar{Y}_{A1} = 1 + j0.72$$

2.
$$\ell_2 = 0.016\lambda \rightarrow \bar{Y}_{A2} = 1 - j0.72$$

Diseño solución 2

Necesitamos implementar $\bar{b}_s = +\bar{b}_A$ ¡OJO! Hay que desnormalizar esta reactancia con Y₀ y volver a normalizar a Y'₀:

1. Desnormalizar:
$$Y_A = \overline{Y}_{A1} \cdot Y_0$$

 $Y_A = 0.02 - j0.0144 \, S$

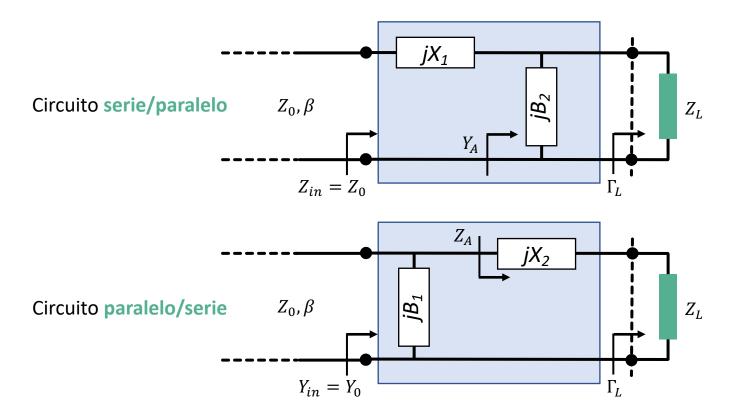
2. Renormalizamos:
$$\bar{Y}'_A = {^{Y_A}/_{Y'_0}}$$

 $\bar{Y}'_A = 2 - j1.44$

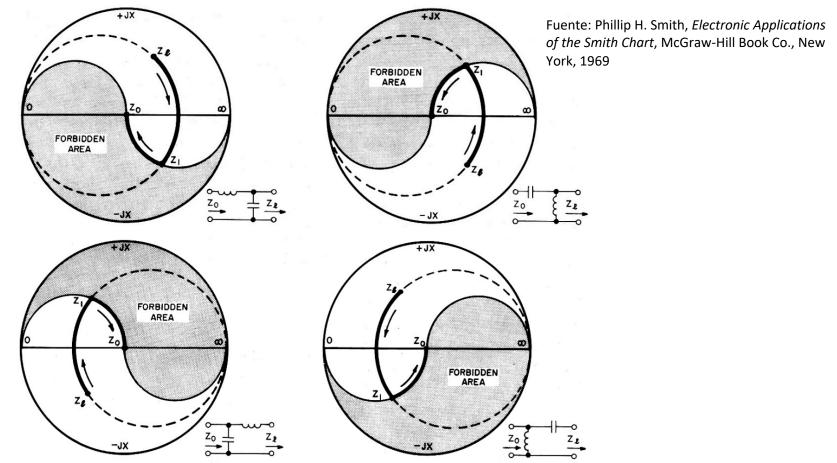
- 3. Implementamos $\bar{Y}'_s = +j1.44$
- Stub c.c.: ℓ desde Y = $\infty \rightarrow \ell_s = 0.404\lambda$
- Stub c.a.: ℓ desde Y = 0 $\rightarrow \ell_s$ = 0.154 λ

(Desplazamientos desde c.c. o c.a. hacia el generador)

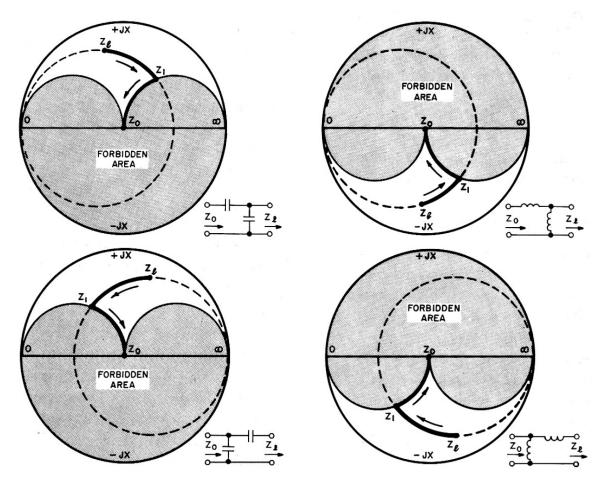
- Las redes vistas en el apartado 6.2 permiten adaptar cualquier carga pasiva pero no proporcionan control sobre la distancia a la carga
- Como alternativa surgen las redes con elementos reactivos en forma de L
- Dos configuraciones:



- El inconveniente de estas redes es que, dado los desplazamientos que realizan las capacidades/inductancias en serie/paralelo hay cargas que no se pueden adaptar
- Áreas de la carta de Smith con impedancias no adaptables → zonas prohibidas



Áreas de la carta de Smith con impedancias no adaptables → zonas prohibidas



Fuente: Phillip H. Smith, Electronic Applications of the Smith Chart, McGraw-Hill Book Co., New York, 1969

6.3.1. Soluciones analíticas

Circuito serie (jX_1) – paralelo (jB_2)

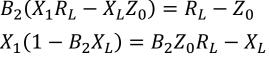
Adaptación si:

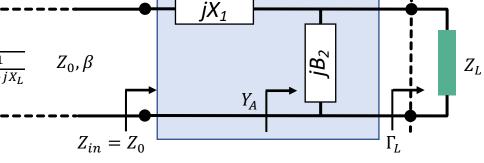
$$Z_{in} = Z_0 = jX_1 + \frac{1}{jB_2 + \frac{1}{Z_L}} = jX_1 + \frac{1}{jB_2 + \frac{1}{R_L + jX_L}} \qquad Z_0, \beta$$

Separando parte real e imaginaria:

$$B_2(X_1R_L - X_LZ_0) = R_L - Z_0$$

$$X_1(1 - B_2X_L) = B_2Z_0R_L - X_L$$





Resolviendo para B₂:

$$B_2 = \frac{X_L \pm \sqrt{R_L/Z_0} \cdot \sqrt{R_L^2 + X_L^2 - Z_0 R_L}}{R_L^2 + X_L^2}$$
 (dos posibles soluciones)

Hay solución físicamente realizable si $R_L^2 + X_L^2 - Z_0 R_L > 0 \rightarrow R_L > Z_0$

Por tanto, \bar{z}_L debe estar dentro del círculo 1+jx de la Carta de Smith

El valor de la reactancia serie será:
$$X_1 = \frac{1}{B_2} + \frac{X_L \cdot Z_0}{R_L} - \frac{Z_0}{B_2 \cdot R_L}$$

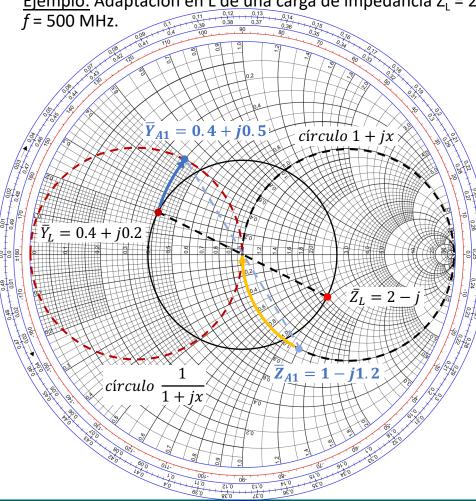
Si $B_2 > 0 \rightarrow$ capacidad; $B_2 < 0 \rightarrow$ inductancia

Si
$$X_1 > 0 \rightarrow$$
 inductancia; $X_1 < 0 \rightarrow$ capacidad

6.3.2. Soluciones sobre la carta de Smith

A. Circuito serie (jX_1) – paralelo (jB_2)

Ejemplo: Adaptación en L de una carga de impedancia $Z_L = 200 - j100 \Omega$ a una línea de $Z_0 = 100 \Omega$ a la frecuencia



Solución 1:

- 1. Dibujamos $\bar{Z}_L = 2 j$
- 2. Dentro círculo $1+jx \rightarrow circuito serie/paralelo$
- 3. Calculamos $\bar{Y}_L = 0.4 + j0.2$
- 4. Con \bar{B}_2 desplazo \bar{Y}_L a la circunferencia $\bar{y} = \frac{1}{1+jx}$

Dibujamos circunf. $\bar{y} = \frac{1}{1+jx}$ con centro en g=1/3 que pasa por el origen.

Nos movemos por circunf. $g_A = 0.4$ hasta corte con

$$\bar{y} = \frac{1}{1+jx} \to \bar{Y}_{A1} = 0.4 + j0.5 \to \bar{B}_2 = 0.3$$

5. Siguiente elemento X₁ en serie: pasamos a impedancias:

$$\bar{Z}_{A1} = 1 - j1.2$$

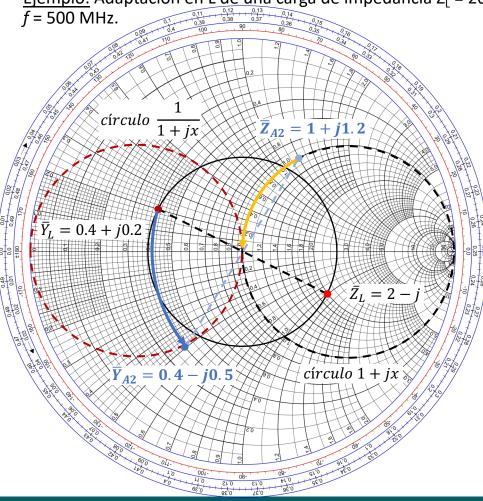
- 6. Con reactancia serie llego al centro, $\overline{X}_1 = 1.2$
- 7. Susceptancia positiva → Condensador
- 8. Reactancia positiva → Bobina

$$C = \frac{\bar{B}_2}{2\pi f Z_0} = 0.95 \ pF \quad L = \frac{\bar{X}_1 Z_0}{2\pi f} = 38.2 \ nH$$

6.3.2. Soluciones sobre la carta de Smith

A. Circuito serie (jX_1) – paralelo (jB_2)

Ejemplo: Adaptación en L de una carga de impedancia $Z_L = 200 - j100 \Omega$ a una línea de $Z_0 = 100 \Omega$ a la frecuencia



Solución 2:

- 1. Dibujamos $\bar{Z}_L = 2 j$
- 2. Dentro círculo $1+jx \rightarrow circuito serie/paralelo$
- 3. Calculamos $\bar{Y}_L = 0.4 + j0.2$
- 4. Con \bar{B}_2 desplazo \bar{Y}_L a la circunferencia $\bar{y} = \frac{1}{1+jx}$

Dibujamos circunf. $\bar{y} = \frac{1}{1+jx}$ con centro en g=1/3 que pasa por el origen.

Nos movemos por circunf. $g_A = 0.4$ hasta corte con

$$\bar{y} = \frac{1}{1+jx} \to \bar{Y}_{A2} = 0.4 - j0.5 \to \bar{B}_2 = -0.7$$

5. Siguiente elemento X₁ en serie: pasamos a impedancias:

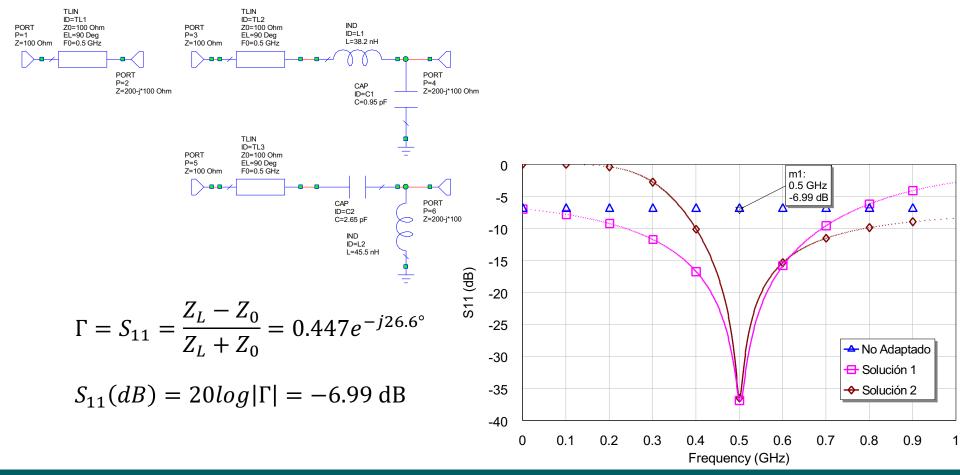
$$\bar{Z}_{A2} = 1 + j1.2$$

- 6. Con reactancia serie llego al centro, $\overline{X}_1 = -1.2$
- 7. Susceptancia negativa → Bobina
- 8. Reactancia negativa → Condensador

$$L = \frac{-Z_0}{2\pi f \bar{B}_2} = 45.5 nH$$
 $C = \frac{-1}{2\pi f \bar{X}_1 Z_0} = 2.65 pF$

A. Circuito serie (jX_1) – paralelo (jB_2)

<u>Ejemplo:</u> Adaptación en L de una carga de impedancia $Z_L = 200 - j100 \Omega$ a una línea de $Z_0 = 100 \Omega$ a la frecuencia f = 500 MHz.



6.3.1. Soluciones analíticas

B. Circuito paralelo (jB_1) – serie (jX_2)

Adaptación si:

$$Y_{in} = Y_0 = \frac{1}{Z_0} = jB_1 + \frac{1}{j(X_2 + X_L) + R_L}$$

Separando parte real e imaginaria:

$$B_1 Z_0 (X_2 + X_L) = Z_0 - R_L$$
$$(X_2 + X_L) = B_1 Z_0 R_L$$

 Z_A jX_2 Z_L $Y_{in} = Y_0$

Resolviendo para B₁, X₂:

$$B_1 = rac{\pm \sqrt{rac{Z_0 - R_L}{R_L}}}{Z_0}$$
 $X_2 = \pm \sqrt{R_L(Z_0 - R_L)} - X_L$ (dos posibles soluciones)

Hay solución físicamente realizable si $Z_0 - R_L > 0 \rightarrow R_L < Z_0$

Por tanto, \bar{z}_L debe estar fuera del círculo 1+jx de la Carta de Smith

Si $B_1 > 0 \rightarrow$ capacidad; $B_1 < 0 \rightarrow$ inductancia

Si $X_2 > 0 \rightarrow$ inductancia; $X_2 < 0 \rightarrow$ capacidad

6.3.2. Soluciones sobre la carta de Smith

Circuito paralelo (jB_1) – serie (jX_2)

Ejemplo: Adaptación en L de una carga de impedancia $Z_1 = 50 - j100 \Omega$ a una línea de $Z_0 = 100 \Omega$ a la frecuencia f = 500 MHz.círculo $\frac{1}{1+jx}$ $\overline{Z}_{A1} = 0.5 - j0.5$ círculo 1 + jx $\bar{Z}_L = 0.5 - i$

Solución 1:

- 1. Dibujamos $\bar{Z}_L = 0.5 i$
- 2. Fuera círculo $1+jx \rightarrow circuito paralelo/serie$
- 3. Con \bar{X}_2 desplazo \bar{Z}_L a la circunferencia $\bar{y} = \frac{1}{1+ix}$

Dibujamos circunf. $\bar{y} = \frac{1}{1+ix}$ con centro en g=1/3 que pasa por el origen.

Nos movemos por circunf. $g_A = 0.5$ hasta corte con

$$\bar{y} = \frac{1}{1+jx} \to \bar{Z}_{A1} = 0.5 - j0.5 \to \bar{X}_2 = 0.5$$

4. Siguiente elemento B₁ en paralelo: pasamos a admitancias:

$$\overline{Y}_{A1} = 1 + j$$

- 5. Con susceptancia llego al centro, $\overline{B}_1 = -1$
- 6. Reactancia positiva → Bobina
- 7. Susceptancia negativa → Bobina

$$L = \frac{\bar{X}_2 Z_0}{2\pi f} = 15.9 \, nH$$
 $L = \frac{-Z_0}{2\pi f \bar{B}_1} = 31.8 \, nH$

6.3.2. Soluciones sobre la carta de Smith

Circuito paralelo (jB_1) – serie (jX_2)

Ejemplo: Adaptación en L de una carga de impedancia $Z_1 = 50 - j100 \Omega$ a una línea de $Z_0 = 100 \Omega$ a la frecuencia f = 500 MHz. círculo 1 + jx $\sqrt{Z}_{A2}=0.5+j0.5$ $\overline{Y}_{A2} = 1 - 1$ $\langle c \text{ ir culo } \frac{1+jx}{1+jx} \rangle$ $\bar{Z}_L = 0.5 - j$

Solución 2:

- 1. Dibujamos $\bar{Z}_L = 0.5 i$
- 2. Fuera círculo $1+jx \rightarrow circuito paralelo/serie$
- 3. Con \bar{X}_2 desplazo \bar{Z}_L a la circunferencia $\bar{y} = \frac{1}{1+ix}$

Dibujamos circunf. $\bar{y} = \frac{1}{1+ix}$ con centro en g=1/3 que pasa por el origen.

Nos movemos por circunf. $g_A = 0.5$ hasta corte con $\bar{y} = \frac{1}{1+ix} \to \bar{Z}_{A2} = 0.5 + j0.5 \to \bar{X}_2 = 1.5$

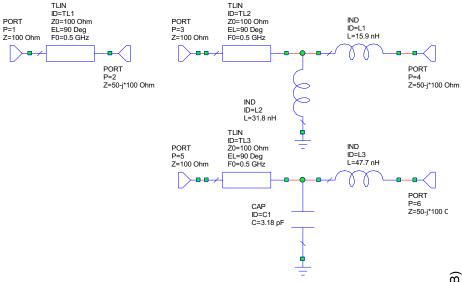
$$\bar{Y}_{A2} = 1 - j$$

- 5. Con susceptancia llego al centro, $\overline{B}_1 = +1$
- 6. Reactancia positiva → Bobina
- 7. Susceptancia positiva \rightarrow Condensador

$$L = \frac{\bar{X}_2 Z_0}{2\pi f} = 47.7 nH$$
 $C = \frac{\bar{B}_1}{2\pi f Z_0} = 3.18 pF$

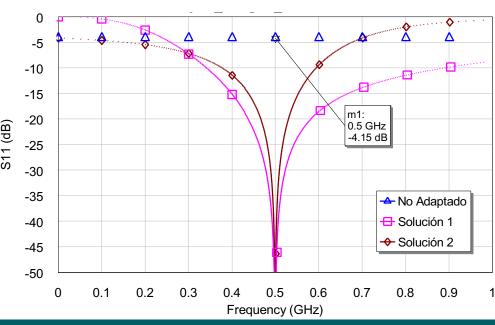
B. Circuito paralelo (jB_1) – serie (jX_2)

<u>Ejemplo:</u> Adaptación en L de una carga de impedancia $Z_L = 50 - j100 \Omega$ a una línea de $Z_0 = 100 \Omega$ a la frecuencia f = 500 MHz.



$$\Gamma = S_{11} = \frac{Z_L - Z_0}{Z_L + Z_0} = 0.62e^{-j82.9^{\circ}}$$

$$S_{11}(dB) = 20log|\Gamma| = -4.15 dB$$

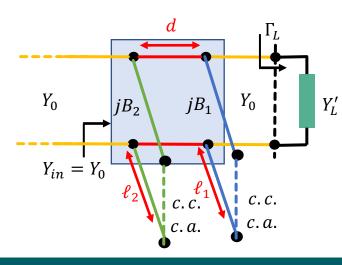


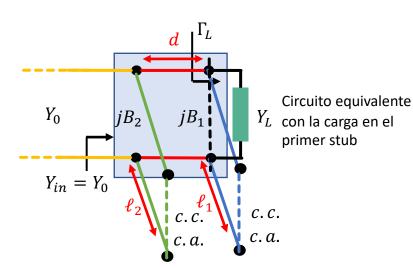
- Stub simple (sección 6.2.3)
 - Parte real de $Z_L \neq 0$
 - Sin mecanismo de control de la distancia a la carga → redes de adaptación de gran longitud
 - Dificultad para sintonía variable

Doble stub

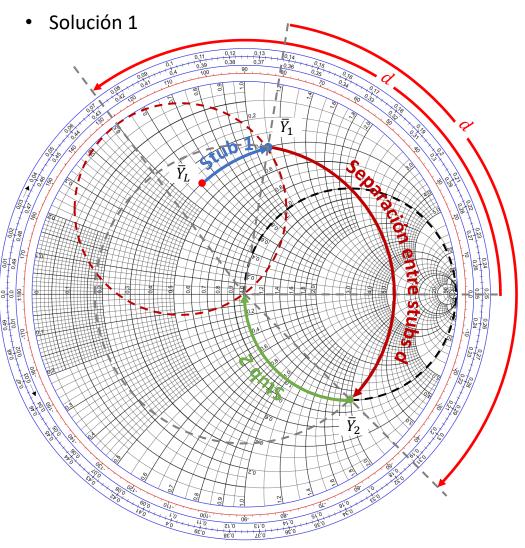
- Se pueden utilizar dos stubs ajustables en paralelo. Elemento común en coaxial en el laboratorio
- No es capaz de adaptar cualquier tipo de carga
- 3 pasos \rightarrow 3 variables: ℓ_1 , ℓ_2 y d

Circuito original con distancia arbitraria de la carga al primer stub



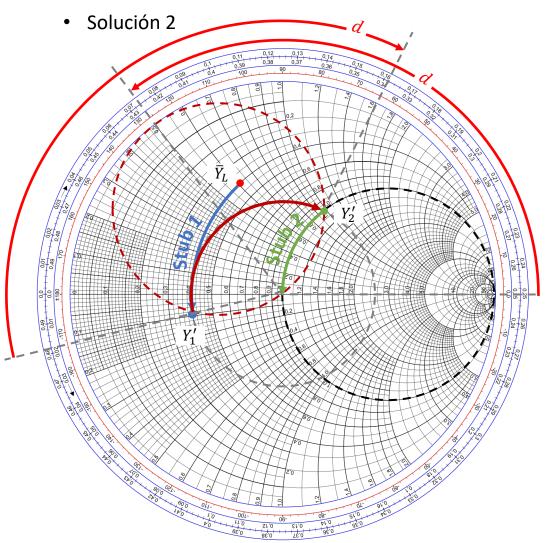


6.4.1. Solución doble stub sobre la carta de Smith



- 1. Dibujamos \bar{Y}_L
- Dibujamos circunferencia 1+jb rotada la distancia eléctrica correspondiente a d (hacia la carga)
- 3. Primer stub introduce admitancia $j\bar{B}_1$ que lleva \bar{Y}_L a la circunferencia rotada $\to \bar{Y}_1$
- 4. Separación entre stubs desplaza \overline{Y}_1 (por circunf. radio $|\Gamma|$) a circunferencia g = 1 en dirección al generador $\to \overline{Y}_2$
- 5. Segundo stub introduce admitancia $jar{B}_2$ que lleva $ar{Y}_2$ al centro

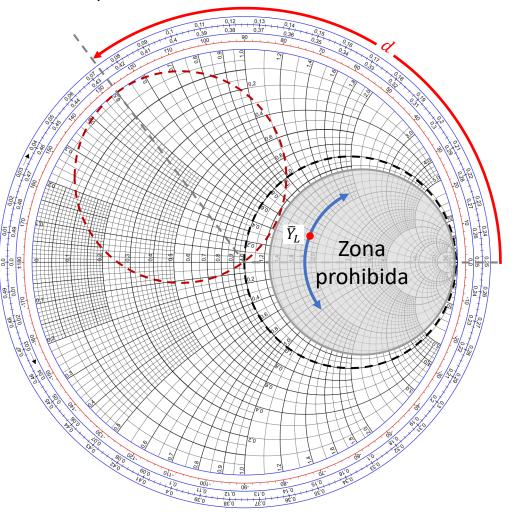
6.4.1. Solución doble stub sobre la carta de Smith



- 1. Dibujamos \bar{Y}_L
- Dibujamos circunferencia 1+jb rotada la distancia eléctrica correspondiente a d (hacia la carga)
- 3. Primer stub introduce admitancia $j\bar{B}_1$ que lleva \bar{Y}_L a la circunferencia rotada $\to Y_1'$
- 4. Separación entre stubs desplaza \overline{Y}_1 (por circunf. radio $|\Gamma|$) a circunferencia g = 1 en dirección al generador $\to Y_2'$
- 5. Segundo stub introduce admitancia $j\bar{B}_2$ que lleva Y_2' al centro

6.4.1. Solución doble stub sobre la carta de Smith

Zona prohibida



- **Círculo prohibido** → conjunto de admitancias que no pueden ser adaptadas con este tipo de adaptador.
- Si \overline{Y}_L está dentro del círculo g_0 +jb \rightarrow ningún valor de susceptancia \overline{B}_1 podría llevar el punto de carga hasta el círculo 1+jb.
- Forma de reducir el rango prohibido → disminución de la distancia entre stubs, d.
- Sin embargo, d suficientemente grande para poder construir los stubs.
- Stubs con d = 0 ó $\lambda/2 \rightarrow$ muy sensibles en frecuencia. Habitual $d = \lambda/8$ ó $3\lambda/8$.

6.4.2. Solución doble stub analítica

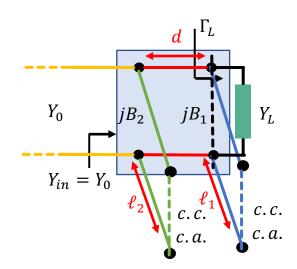
Admitancia en el punto de unión del primer stub

$$Y_1 = G_L + j(B_L + B_1)$$

Admitancia justo antes del segundo stub

$$Y_2 = Y_0 \cdot \frac{G_L + j(B_L + B_1 + Y_0 \tan(\beta d))}{Y_0 + j \tan(\beta d)(G_L + jB_L + jB_1)}$$

Teniendo en cuenta que Re(Y₂) = Y₀ y resolviendo para G_L:



$$G_L = Y_0 \cdot \frac{1 + (\tan(\beta d))^2}{(\tan(\beta d))^2} \left[1 \pm \sqrt{1 - \frac{4(\tan(\beta d))^2 (Y_0 - B_L(\tan(\beta d)) - B_1(\tan(\beta d)))^2}{Y_0^2 (1 + (\tan(\beta d))^2)^2}} \right]$$

Como G_L es real se llega a que:

$$0 \le G_L \le Y_0 \cdot \frac{1 + (\tan(\beta d))^2}{(\tan(\beta d))^2} = \frac{Y_0}{\operatorname{sen}^2(\beta d)}$$

Rango de G_L que puede ser adaptado para una distancia entre stubs d

6.4.2. Solución doble stub analítica

Una vez fijada la separación entre stubs, d, se pueden calcular

$$B_1 = -B_L + \frac{Y_0 \pm \sqrt{(1 + (\tan(\beta d))^2)G_L Y_0 - G_L^2(\tan(\beta d))^2)}}{\tan(\beta d)}$$

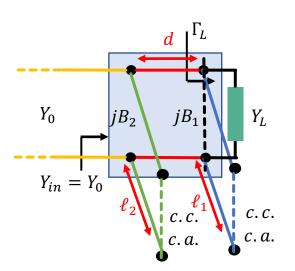
$$B_2 = \frac{\pm Y_0 \sqrt{(1 + (\tan(\beta d))^2) G_L Y_0 - G_L^2 (\tan(\beta d))^2)} + G_L Y_0}{G_L \tan(\beta d)}$$

$$\frac{\ell_{ca}}{\lambda} = \frac{1}{2\pi} \tan^{-1} \left(\frac{B}{Y_0} \right)$$

Y la longitud del stub en cortocircuito se calcula mediante:

$$\frac{\ell_{cc}}{\lambda} = \frac{-1}{2\pi} \tan^{-1} \left(\frac{Y_0}{B} \right)$$

- Donde B son las susceptancias de los stubs (B₁ ó B₂)
- Si ℓ es negativa (B < 0) entonces esa longitud se resta a un stub de $\ell=0.5\lambda$



<u>Ejemplo</u>: Diseñar una red de adaptación don dos stubs en paralelo para adaptar una carga $Z_L = 60 - 100$ j80 Ω a una línea con $Z_0 = 50$ Ω . Los stubs están en circuito abierto y distanciados $\lambda/8$. f = 0.5 GHz.

Solución:

$$\bar{Z}_L = 1.2 - j1.6 \rightarrow \bar{Y}_L = 0.3 + j0.4$$

Dibujamos círculo 1+jb rotado $d = \lambda/8$

Susceptancia primer stub:

Solución 1:
$$\bar{Y}_1 = 0.3 + j1.7 \rightarrow \bar{B}_1 = 1.3$$

Solución 2:
$$\overline{Y'}_1 = 0.3 + j0.28 \rightarrow \overline{B'}_1 = -0.12$$

Desplazo \bar{Y}_1 $\lambda/8$ hacia el generador:

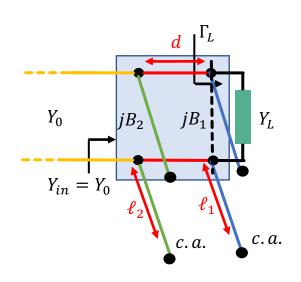
Solución 1:
$$\bar{Y}_2 = 1 - j3.4 \rightarrow \bar{B}_2 = 3.4$$

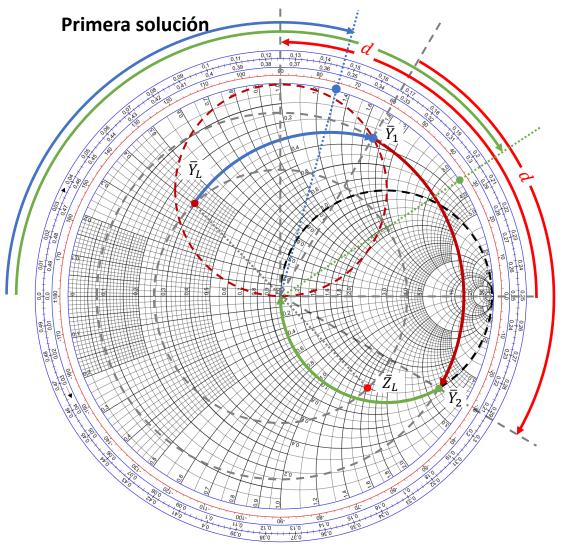
Solución 2:
$$\overline{Y'}_2 = 1 + j1.38 \rightarrow \overline{B'}_2 = -1.38$$

Longitud de los stubs:

Solución 1:
$$\ell_1$$
= 0.146 λ , ℓ_2 = 0.204 λ

Solución 2:
$$\ell_1$$
= 0.481 λ , ℓ_2 = 0.350 λ

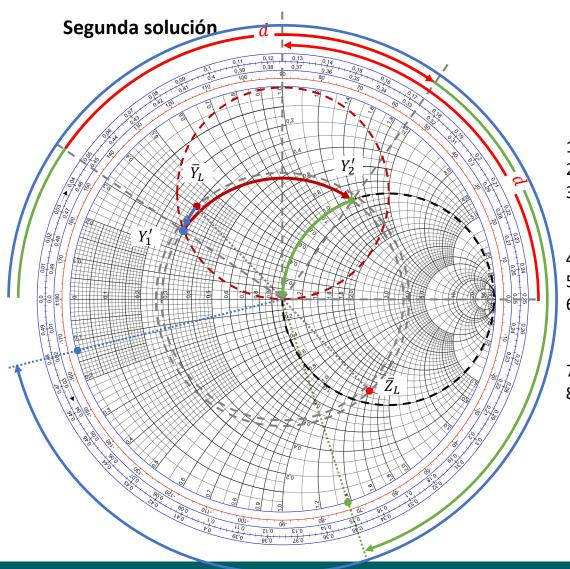




- 1. Dibujamos $\bar{Z}_L = 1.2 j1.6$
- 2. Obtenemos $\bar{Y}_L = 0.3 + j0.4$
- 3. Dibujamos circunferencia 1+jb rotada la distancia eléctrica correspondiente a d (hacia la carga)
- 4. Llevo \overline{Y}_L a $\overline{Y}_1=0.3+j1.7$
- 5. Obtengo $j\bar{B}_1 = j1.3$
- 6. Separación entre stubs desplaza \overline{Y}_1 (por circunf. radio $|\Gamma|$) a circunferencia g=1 en dirección al generador $\to Y_2'=1-j3.4$
- 7. Obtengo $j\bar{B}_2 = j3.4$ que lleva Y_2' al centro
- 8. Calculo la longitud de los stubs para conseguir esas susceptancias

$$\ell_1 = 0.146\lambda$$

 $\ell_2 = 0.204\lambda$

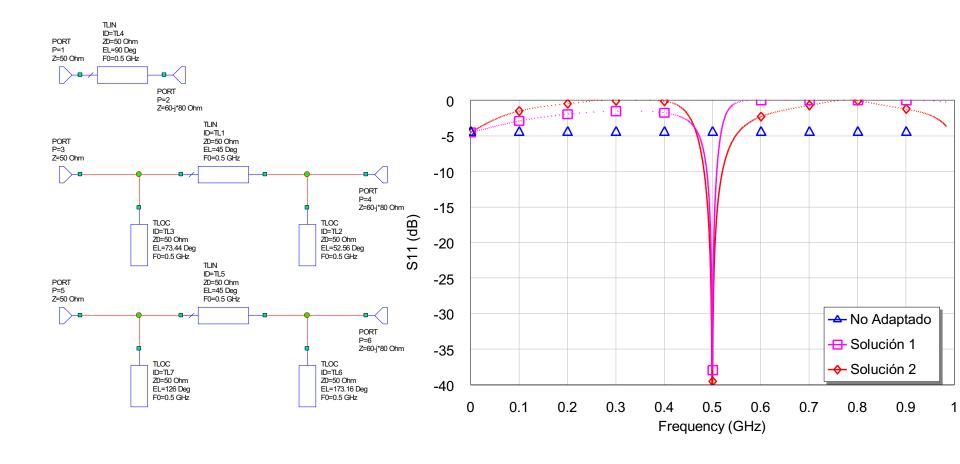


- 1. Dibujamos $\bar{Z}_L = 1.2 j1.6$
- 2. Obtenemos $\bar{Y}_L = 0.3 + j0.4$
- Dibujamos circunferencia 1+jb rotada la distancia eléctrica correspondiente a d (hacia la carga)
- 4. Llevo \bar{Y}_L a $\bar{Y}_1 = 0.3 + j0.28$
- 5. Obtengo $j\bar{B}_1 = -j0.12$
- 6. Separación entre stubs desplaza \overline{Y}_1 (por circunf. radio $|\Gamma|$) a circunferencia g=1 en dirección al generador $\to Y_2'=1+j1.38$
- 7. Obtengo $j\bar{B}_2 = -j1.38$ que lleva Y_2' al centro
- 8. Calculo la longitud de los stubs para conseguir esas susceptancias

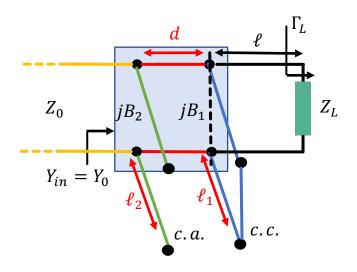
$$\ell_1 = 0.481\lambda$$

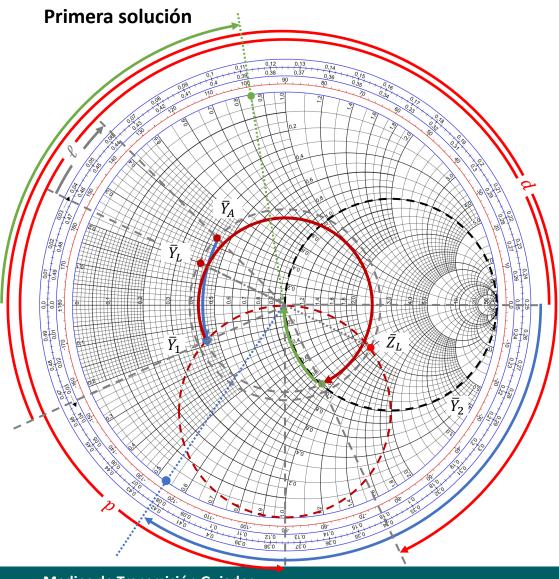
 $\ell_2 = 0.350\lambda$

Simulación coeficiente reflexión



Ejemplo: Diseñar una red de adaptación don dos stubs en paralelo para adaptar una carga Z_L = 100 – j50 Ω a una línea con Z_0 = 50 Ω . La longitud entre la carga y el primer stub es ℓ = 0.028 λ . Los stubs están en cortocircuito el primero y en circuito abierto el segundo y separados una distancia que introduce un desfase de 3 π /4.





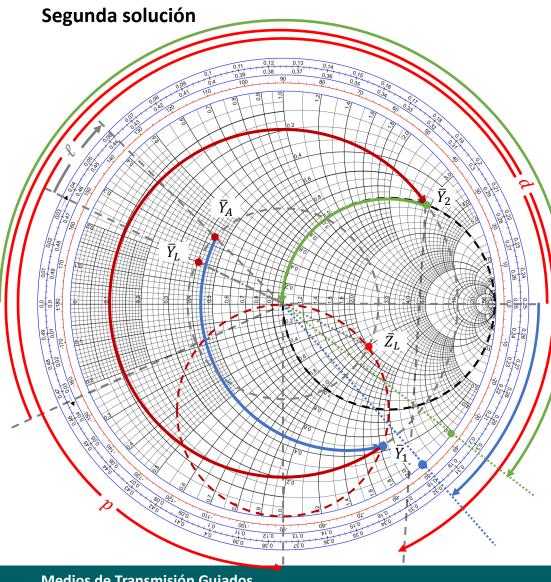
- 1. Dibujamos $\bar{Z}_L = 2 j$
- 2. Obtenemos $\overline{Y}_L = 0.4 + j0.2$
- 3. Desplazamos \bar{Y}_L una distancia ℓ =0.028 λ
- 4. Obtenemos $\bar{Y}_A = 0.44 + j0.36$
- 5. Dibujamos circunferencia 1+jb rotada la distancia eléctrica correspondiente a d (hacia la carga). La distancia se obtiene a partir del desfase recordando la ecuación: $\theta = \beta \ell$
- 6. $\ell = 3\lambda/8 = d$
- 7. Llevo \bar{Y}_A a $\bar{Y}_1 = 0.44 j0.17$
- 8. Obtengo $j\bar{B}_1 = -j0.53$
- . Separación entre stubs desplaza \bar{Y}_1 (por circunf. radio $|\Gamma|$) a circunferencia g = 1 en dirección al generador $\rightarrow \bar{Y}_2 = 1 j0.85$
- 10. Obtengo $j\bar{B}_2=j0.85$ que lleva \bar{Y}_2 al centro
- 11. Calculo la longitud de los stubs para conseguir esas susceptancias:
 - Gráficamente

$$\ell_1 = 0.172\lambda$$
$$\ell_2 = 0.112\lambda$$

Analíticamente

$$\frac{\ell_{cc}}{\lambda} = \frac{-1}{2\pi} \tan^{-1} \left(\frac{Y_0}{B} \right) = \frac{-1}{2\pi} \tan^{-1} \left(\frac{1}{-0.53} \right) = 0.172$$

$$\frac{\ell_{ca}}{\lambda} = \frac{1}{2\pi} \tan^{-1} \left(\frac{B}{Y_0} \right) = \frac{1}{2\pi} \tan^{-1} (0.85) = 0.112$$



- 1. Dibujamos $\bar{Z}_L = 2 j$
- 2. Obtenemos $\overline{Y}_L = 0.4 + j0.2$
- 3. Desplazamos \bar{Y}_L una distancia ℓ =0.028 λ
- 4. Obtenemos $\bar{Y}_A = 0.44 + j0.36$
- 5. Dibujamos circunferencia 1+jb rotada la distancia eléctrica correspondiente a d (hacia la carga). La distancia se obtiene a partir del desfase recordando la ecuación: $\theta = \beta \ell$
 - $\ell = 3\lambda/8 = d$
- 7. Llevo \overline{Y}_A a $\overline{Y}_1=0.44-j1.85$
- 3. Obtengo $j\bar{B}_1 = -j2.21$
- Separación entre stubs desplaza \overline{Y}_1 (por circunf. radio $|\Gamma|$) a circunferencia g = 1 en dirección al generador $\rightarrow \overline{Y}_2 = 1 + j2.95$
- 10. Obtengo $j\bar{B}_2 = -j2.95$ que lleva \bar{Y}_2 al centro
- 11. Calculo la longitud de los stubs para conseguir esas susceptancias:
 - Gráficamente

$$\ell_1 = 0.068\lambda$$

 $\ell_2 = 0.302\lambda$

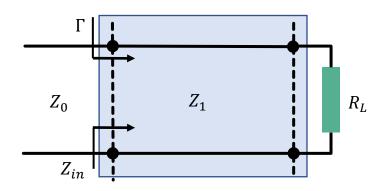
Analíticamente

$$\frac{\ell_{cc}}{\lambda} = \frac{-1}{2\pi} \tan^{-1} \left(\frac{Y_0}{B} \right) = \frac{-1}{2\pi} \tan^{-1} \left(\frac{1}{-2.21} \right) = 0.0676$$

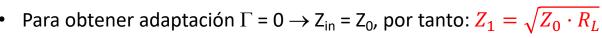
$$\frac{\ell_{ca}}{\lambda} = \frac{1}{2\pi} \tan^{-1} \left(\frac{B}{Y_0} \right) = \frac{1}{2\pi} \tan^{-1} (-2.95) = -0.198$$

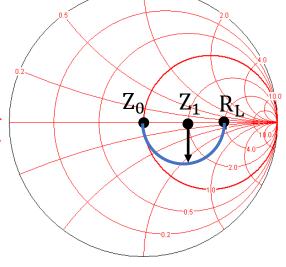
$$\ell_{ca} = 0.5\lambda - 0.198\lambda = 0.302\lambda$$

- Circuito más útil para adaptar una impedancia real a un línea de transmisión (impedancia real)
- Cualquier impedancia compleja se puede transformar en real utilizando, como se ha visto, una línea de transmisión adecuada o un stub reactivo apropiado, serie o paralelo.
- Importante: Z_L y Z₀ tienen que ser reales
- El transformador es un tramo de línea de impedancia Z_1 y longitud eléctrica $\lambda/4$



$$Z_{in} = Z_1 \frac{R_L + jZ_1 tan\beta \ell}{Z_1 + jR_L tan\beta \ell} \xrightarrow{\ell = \lambda/4} Z_{in} = \frac{Z_1^2}{R_L}$$





- El transformador cuarto de onda tiene un ancho de banda pequeño
- El ancho de banda se puede aumentar añadiendo más secciones de longitud $\lambda/4$
- Las impedancias de las diferentes secciones están tabuladas para diferentes funciones de transferencia

Respuesta Binomial

TABLE 5.1 Binomial Transformer Design

NOTA: La tabla es válida para $Z_L > Z_0$. Por tanto, para valores $Z_L < Z_0$ las impedancias se deben intercambiar.

		N=2		N=3			N=4				_
Z	Z_L/Z_0	Z_{1}/Z_{0}	Z_2/Z_0	Z_1/Z_0	Z_2/Z_0	Z_3/Z_0	Z_1/Z_0	Z_2/Z_0	Z_3/Z_0	Z_4/Z_4	Z_0
	1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.00	00
	1.5	1.1067	1.3554	1.0520	1.2247	1.4259	1.0257	1.1351	1.3215	1.46	24
	2.0	1.1892	1.6818	1.0907	1.4142	1.8337	1.0444	1.2421	1.6102	1.91	50
	3.0	1.3161	2.2795	1.1479	1.7321	2.6135	1.0718	1.4105	2.1269	2.79	90
	4.0	1.4142	2.8285	1.1907	2.0000	3.3594	1.0919	1.5442	2.5903	3.66	33
	6.0	1.5651	3.8336	1.2544	2.4495	4.7832	1.1215	1.7553	3.4182	5.35	00
	8.0	1.6818	4.7568	1.3022	2.8284	6.1434	1.1436	1.9232	4.1597	6.99	55
	10.0	1.7783	5.6233	1.3409	3.1623	7.4577	1.1613	2.0651	4.8424	8.61	10
	l		N = 5					N =	: 6		
Z_L/Z_0	Z_1/Z	$Z_0 = Z_2/Z_0$	Z_3/Z_0	Z_4/Z_0	Z_5/Z_0	Z_1/Z_0	Z_2/Z_0	Z_3/Z_0	Z_4/Z_0	Z_5/Z_0	Z_6/Z_0
1.0	1.000	00 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1.5	1.012	28 1.0790	1.2247	1.3902	1.4810	1.0064	1.0454	1.1496	1.3048	1.4349	1.4905
2.0	1.022	20 1.1391	1.4142	1.7558	1.9569	1.0110	1.0790	1.2693	1.5757	1.8536	1.9782
3.0	1.035	1.2300	1.7321	2.4390	2.8974	1.0176	1.1288	1.4599	2.0549	2.6577	2.9481
4.0	1.045	1.2995	2.0000	3.0781	3.8270	1.0225	1.1661	1.6129	2.4800	3.4302	3.9120
6.0	1.059	1.4055	2.4495	4.2689	5.6625	1.0296	1.2219	1.8573	3.2305	4.9104	5.8275
8.0	1.070	1.4870	2.8284	5.3800	7.4745	1.0349	1.2640	2.0539	3.8950	6.3291	7.7302
10.0	1.078	39 1.5541	3.1623	6.4346	9.2687	1.0392	1.2982	2.2215	4.5015	7.7030	9.6228

Fuente: David M. Pozar, Microwave Engineering, 4th Ed., John Wiley&Sons, Inc., 2012

Respuesta Chebyshev

TABLE 5.2 Chebyshev Transformer Design

N = 2

	$\Gamma_m = 0.05$		$\Gamma_m = 0.20$		$\Gamma_m = 0.05$			$\Gamma_m = 0.20$		
Z_L/Z_0	$\overline{Z_1/Z_0}$	Z_2/Z_0	$\overline{Z_1/Z_0}$	Z_2/Z_0	$\overline{Z_1/Z_0}$	Z_2/Z_0	Z_3/Z_0	Z_1/Z_0	Z_2/Z_0	Z_3/Z_0
1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1.5	1.1347	1.3219	1.2247	1.2247	1.1029	1.2247	1.3601	1.2247	1.2247	1.2247
2.0	1.2193	1.6402	1.3161	1.5197	1.1475	1.4142	1.7429	1.2855	1.4142	1.5558
3.0	1.3494	2.2232	1.4565	2.0598	1.2171	1.7321	2.4649	1.3743	1.7321	2.1829
4.0	1.4500	2.7585	1.5651	2.5558	1.2662	2.0000	3.1591	1.4333	2.0000	2.7908
6.0	1.6047	3.7389	1.7321	3.4641	1.3383	2.4495	4.4833	1.5193	2.4495	3.9492
8.0	1.7244	4.6393	1.8612	4.2983	1.3944	2.8284	5.7372	1.5766	2.8284	5.0742
10.0	1.8233	5.4845	1.9680	5.0813	1.4385	3.1623	6.9517	1.6415	3.1623	6.0920
					N = 4					

N = 3

Por tanto, para valores $Z_L < Z_0$ las impedancias se deben intercambiar.

NOTA: La tabla es válida para $Z_L > Z_0$.

NOTA 2: El valor Γ_m es el valor máximo permitido de coeficiente de reflexión en la banda de diseño.

		$\Gamma_m =$	= 0.05		$\Gamma_m = 0.20$				
Z_L/Z_0	Z_1/Z_0	Z_2/Z_0	Z_{3}/Z_{0}	Z_4/Z_0	$\overline{Z_1/Z_0}$	Z_2/Z_0	Z_3/Z_0	Z_4/Z_0	
1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
1.5	1.0892	1.1742	1.2775	1.3772	1.2247	1.2247	1.2247	1.2247	
2.0	1.1201	1.2979	1.5409	1.7855	1.2727	1.3634	1.4669	1.5715	
3.0	1.1586	1.4876	2.0167	2.5893	1.4879	1.5819	1.8965	2.0163	
4.0	1.1906	1.6414	2.4369	3.3597	1.3692	1.7490	2.2870	2.9214	
6.0	1.2290	1.8773	3.1961	4.8820	1.4415	2.0231	2.9657	4.1623	
8.0	1.2583	2.0657	3.8728	6.3578	1.4914	2.2428	3.5670	5.3641	
10.0	1.2832	2.2268	4.4907	7.7930	1.5163	2.4210	4.1305	6.5950	

Fuente: David M. Pozar, Microwave Engineering, 4th Ed., John Wiley&Sons, Inc., 2012

Ejemplo: Realizar la adaptación de impedancias entre $Z_0 = 50 \Omega$ y $Z_1 = 100 \Omega$ con transformadores $\lambda/4$ de N = 1, 2, 3 y 4 secciones, respuesta de tipo Chebyshev y coeficiente de reflexión Γ_m = 0.05 $(S_{11} = -26 dB)$ (frecuencia central de diseño $f_0 = 0.5 GHz$)

$$\frac{Z_L}{Z_0} = 2$$

N :	= 2	
$\Gamma_m = 0.05$	$\Gamma_m = 0.20$	

TABLE 5.2 Chebyshev Transformer Design

		N	= 2		N=3							
i	$\Gamma_m = 0.05$		$\Gamma_m = 0.20$			$\Gamma_m = 0.05$			$\Gamma_m = 0.20$			
Z_L/Z_0	Z_1/Z_0	Z_2/Z_0	Z_1/Z_0	Z_2/Z_0	Z_1/Z_0	Z_2/Z_0	Z_3/Z_0	Z_1/Z_0	Z_2/Z_0	Z_3/Z_0		
1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
1.5	1.1347	1.3219	1.2247	1.2247	1.1029	1.2247	1.3601	1.2247	1.2247	1.2247		
2.0	1.2193	1.6402	1.3161	1.5197	1.1475	1.4142	1.7429	1.2855	1.4142	1.5558		
3.0	1.3494	2.2232	1.4565	2.0598	1.2171	1.7321	2.4649	1.3743	1.7321	2.1829		
4.0	1.4500	2.7585	1.5651	2.5558	1.2662	2.0000	3.1591	1.4333	2.0000	2.7908		
6.0	1.6047	3.7389	1.7321	3.4641	1.3383	2.4495	4.4833	1.5193	2.4495	3.9492		
8.0	1.7244	4.6393	1.8612	4.2983	1.3944	2.8284	5.7372	1.5766	2.8284	5.0742		
10.0	1.8233	5.4845	1.9680	5.0813	1.4385	3.1623	6.9517	1.6415	3.1623	6.0920		
					N = 4							

		$\Gamma_m =$	0.05		$\Gamma_m = 0.20$				
Z_L/Z_0	Z_1/Z_0	Z_2/Z_0	Z_{3}/Z_{0}	Z_4/Z_0	$\overline{Z_1/Z_0}$	Z_2/Z_0	Z_{3}/Z_{0}	Z_4/Z_0	
1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
1.5	1.0892	1.1742	1.2775	1.3772	1.2247	1.2247	1.2247	1.2247	
2.0	1.1201	1.2979	1.5409	1.7855	1.2727	1.3634	1.4669	1.5715	
3.0	1.1586	1.4876	2.0167	2.5893	1.4879	1.5819	1.8965	2.0163	
4.0	1.1906	1.6414	2.4369	3.3597	1.3692	1.7490	2.2870	2.9214	
6.0	1.2290	1.8773	3.1961	4.8820	1.4415	2.0231	2.9657	4.1623	
8.0	1.2583	2.0657	3.8728	6.3578	1.4914	2.2428	3.5670	5.3641	
10.0	1.2832	2.2268	4.4907	7.7930	1.5163	2.4210	4.1305	6.5950	

Para
$$N = 1$$

$$Z_1 = \sqrt{Z_0 \cdot R_L} = 70.7\Omega$$
Para $N = 2$

$$\frac{Z_1}{Z_0} = 1.2193 \rightarrow Z_1 = 60.96\Omega$$

$$\frac{Z_2}{Z_0} = 1.6402 \rightarrow Z_2 = 82.01\Omega$$
Para $N = 3$

$$\frac{Z_1}{Z_0} = 1.1475 \rightarrow Z_1 = 57.35\Omega$$

$$\frac{Z_2}{Z_0} = 1.4142 \rightarrow Z_2 = 70.71\Omega$$

$$\frac{Z_3}{Z_0} = 1.7429 \rightarrow Z_3 = 87.14\Omega$$
Para $N = 4$

$$\frac{Z_1}{Z_0} = 1.1201 \rightarrow Z_1 = 56\Omega$$

$$\frac{Z_2}{Z_0} = 1.2979 \rightarrow Z_2 = 64.9\Omega$$

$$\frac{Z_3}{Z_0} = 1.5409 \rightarrow Z_3 = 77.04\Omega$$

$$\frac{Z_3}{Z_0} = 1.7855 \rightarrow Z_4 = 89.27\Omega$$

