

Máquinas Eléctricas I - G862

Prototipo de Examen Final. Teoría y Problemas

Miguel Ángel Rodríguez Pozueta

Departamento de Ingeniería Eléctrica y Energética

Este tema se publica bajo Licencia:

Creative Commons BY-NC-SA 4.0

UNIVERSIDAD DE CANTABRIA

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN

MÁQUINAS ELÉCTRICAS I (G862) (GRADO EN INGENIERÍA ELÉCTRICA)
EXAMEN FINAL: TEORÍA **DURACIÓN: 45 minutos**

TEORÍA:

PREGUNTAS DE DESARROLLO CORTO. Conteste escuetamente, en pocas líneas, sólo a lo que se le pregunta. Todas las preguntas puntúan igual.

PRINCIPIOS GENERALES DE LAS MÁQUINAS ELÉCTRICAS

- 1) Escriba la expresión que se obtiene aplicando el *principio de los trabajos virtuales* y que permite calcular la <u>fuerza</u> que se ejerce en un circuito magnético en función de la <u>coenergía magnética</u>.
- 2) Enuncie el *Teorema de Leblanc*, el cual se refiere a la fuerza magnetomotriz (f.m.m.) creada por un devanado monofásico.
- 3) Enuncie el *Principio de reversibilidad* de las máquinas eléctricas.

TRANSFORMADORES

- **4)** Defina la *relación de transformación <u>asignada</u>* de un transformador.
- 5) Escriba las cuatro *ecuaciones* que permiten analizar un transformador con su <u>secundario</u> reducido al primario.
- **6)** Describa un *transformador de tensión*.

MÁQUINAS ASÍNCRONAS O DE INDUCCIÓN

- 7) Dibuje un esquema de la *caja de bornes* de un motor <u>trifásico de jaula de ardilla</u> indicando la <u>denominación normalizada (según la norma actual</u>) de los bornes y dibujando también los puentes que conectan dichos bornes cuando la máquina se conecta en <u>estrella</u>.
- 8) Dibuje el *circuito equivalente exacto* de un motor asíncrono trifásico.
- 9) Dibuje la *curva par-velocidad* de un <u>motor de doble jaula</u>.

MÁOUINAS SÍNCRONAS

- **10)** Describa el *ensayo de cortocircuito* de un alternador síncrono.
- **11)** Escriba la fórmula que permite calcular la *reactancia síncrona* X_{sb} que se emplea en el <u>análisis</u> <u>lineal mejorado</u>. Esta fórmula relaciona X_{sb} con X_{s} (no sat), X_{σ} y el factor de saturación k_{sr} .
- **12)** Dibuje la familia de *características exteriores* de un alternador síncrono aislado cuando su corriente de excitación es I_{e0} (que en vacío da lugar a la tensión asignada o nominal).

MÁQUINAS DE CORRIENTE CONTINUA

- **13)** Escriba las *expresiones* que permiten calcular la <u>f.e.m.</u> E y el <u>par</u> M de una máquina de corriente continua a partir de los parámetros constructivos K_E y K_M.
- **14)** La *reacción de inducido* de una máquina de corriente continua cuando tiene las escobillas colocadas sobre la <u>línea neutra teórica</u>: ¿qué dirección tiene? ¿qué efectos produce?

UNIVERSIDAD DE CANTABRIA

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN MÁQUINAS ELÉCTRICAS I (G862) (GRADO EN INGENIERÍA ELÉCTRICA) EXAMEN FINAL: PROBLEMAS DURACIÓN: 1 hora y 50 minutos

EXAMEN FINAL: PROBLEMAS DURACION: 1 nora y 50 minutos

Todos los problemas de este examen puntúan igual

PROBLEMAS:

1) Un transformador *monofásico* de 100 kVA, 5000/1000 V y 50 Hz tiene estas magnitudes:

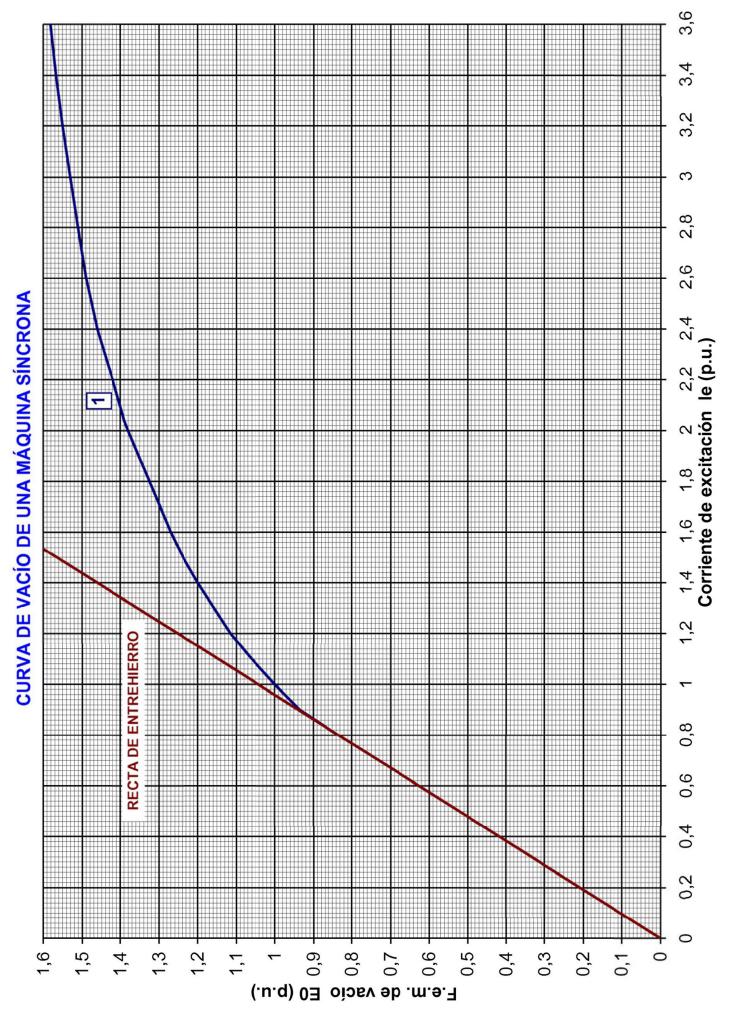
$$P_0 = 686 \text{ W}$$
 $\epsilon_{Rcc} = 1.4\%$ $\epsilon_{cc} = 5\%$

- a) Calcule las siguientes magnitudes de este transformador: ϵ_{Xcc} , R_{cc} , P_{CuN} (Pérdidas en el cobre nominales o asignadas) y P_{Fe} (Pérdidas en el hierro). (18% de la nota del problema).
- **b)** ¿Qué magnitudes se medirían si a este transformador se le realiza un ensayo de cortocircuito a la intensidad asignada alimentándolo por el primario? (15% de la nota del problema).
- c) Si se produce un cortocircuito en el secundario, ¿cuáles serán las corrientes que circulan por el primario y por el secundario? (17% de la nota del problema).
- d) Si este transformador está conectado a la tensión asignada (o nominal) en el primario y alimenta por el secundario a una carga que demanda 63750 W con un factor de potencia 0,85 capacitivo, ¿cuál será la tensión en el secundario? (25% de la nota del problema).
- e) ¿Cuál es el rendimiento del transformador para la carga del apartado anterior? ¿Cuál es el índice de carga óptimo de este transformador? (25% de la nota del problema).
- 2) (Todos los apartados de este problema puntúan igual)

Un motor asíncrono trifásico de jaula de ardilla, 400/693 V, 50 Hz y 966 r.p.m. tiene estos parámetros:

$$R_1 = 0.5 \Omega$$
; $R'_2 = 0.63 \Omega$; $X_{cc} = 3.11 \Omega$

Este motor está conectado a una red cuya tensión de línea vale 400 V. Las pérdidas mecánicas de este motor son despreciables.


- a) Indicar la forma de conexión de este motor. ¿Cuáles son su número de polos y su velocidad de sincronismo?
- **b)** Calcular su potencia asignada (o nominal).
- c) Determinar la velocidad de este motor cuando su par es máximo.
- **d)** Calcular la corriente de línea y el par en el arranque directo.
- e) ¿Cuál será la mínima tensión de línea con que este motor puede arrancar si debe vencer un par resistente constante e igual a 103 Nm?
- 3) Un alternador síncrono de 12,5 MVA, 11 kV, 50 Hz, trifásico, de 2 polos, conexión <u>estrella</u> y resistencia de inducido despreciable tiene la característica de vacío adjunta. La corriente de excitación que en vacío origina la tensión asignada (nominal) en el inducido es $I_{e0} = 100 \text{ A}$.

Los ensayos de cortocircuito y de carga reactiva han dado estos resultados:

Ensayo de cortocircuito:
$$I_{cortoL}$$
 = I_{NL} ; I_e = 111 A
Ensayo de carga reactiva: I = I_{NL} ; V_L = V_{NL} ; I_e = 224 A

- a) Dibujar el triángulo de Potier y obtener la reactancia de dispersión X_{σ} (suponerla igual a la reactancia de Potier) y la f.m.m. de reacción de inducido \mathscr{F}_1 cuando circula la corriente asignada (nominal) por las fases del inducido. (35% de la nota del problema).
- **b)** Mediante el <u>método de Potier</u> determinar la regulación de este alternador cuando funciona en condiciones asignadas (nominales) con un factor de potencia 0,8 inductivo. (40% de la nota del problema).
- c) Calcular las reactancias síncronas no saturada X_s (no sat) y saturada X_s para $I_e = I_{e0}$, la velocidad de sincronismo n_1 y la f.m.m. de reacción de inducido \mathscr{F}_i cuando la corriente en el inducido es 421 A. (25% de la nota del problema).

M.A.R.Pozueta -2-

RESULTADOS DE LOS PROBLEMAS DEL EXAMEN

1) a)
$$\varepsilon_{Xcc} = 4.8\%$$
; $R_{cc} = 3.5 \Omega$; $P_{CuN} = 1400 W$; $P_{Fe} = 686 W$

b)
$$V_{1cc} = 250 \text{ V}$$
; $I_{1N} = 20 \text{ A}$; $P_{cc} = 1400 \text{ W}$

c)
$$I_{1falta} = 400 \text{ A}$$
; $I_{2falta} = 2000 \text{ A}$

d) (S = 75 kVA; C = 0,75;
$$\varepsilon_c$$
 = -1%) V_2 = 1010 V (hay efecto Ferranti)

e) (
$$P_{Cu} = 787.5 \text{ W}$$
) $\eta = 97.7\%$; $C_{opt} = 0.7$

- 2) a) Conexión triángulo; 2p = 6 polos; $n_1 = 1000$ r.p.m.
 - **b)** $(s_N = 0.034)$ $P_N = 23110$ W
 - **c)** $(s_m = 0.2)$ $n_m = 800$ r.p.m.
 - **d)** $I_a = 120.9 \text{ A}$; $I_{aL} = 209.4 \text{ A}$
 - **e)** $V_1 = V_{1L} = 250 \text{ V}$
- **3) a)** $(V_N = V_b = 6351 \text{ V}; I_N = I_b = 656 \text{ A}; Z_b = 9,68 \Omega) X_\sigma = 0,15 \text{ p.u.} = 1,45 \Omega; \mathscr{F}_i = 0,95 \text{ p.u.} = 95 \text{ A}$
 - **b)** (E₀ = 1,365 p.u. = 8669 V; δ = 27,1°) ϵ = 36,5%
 - c) $X_s(\text{no sat}) = 1.16 \text{ p.u.} = 11.19 \Omega$; $X_s(\text{sat}) = 1.11 \text{ p.u.} = 10.76 \Omega$; $n_1 = 3000 \text{ r.p.m.}$; $\mathscr{T}_1 = 0.61 \text{ p.u.} = 61 \text{ A}$