



## **Materials**

Test 02. Topic 4 - Topic 7



## José Antonio Casado del Prado Borja Arroyo Martínez Diego Ferreño Blanco

Department of Science And Engineering of Land and Materials

This work is published under a License: <u>Creative Commons BY-NC-SA 4.0</u>



| 2 <sup>nd</sup> Test MATERIALS. L4-L7                                                                                       |                                                                                                                                                                                                               |                                                                    |                                                                    | N٥                                                   | Mark                       |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|----------------------------|
| ACADEMIC YEAR:                                                                                                              |                                                                                                                                                                                                               | Date:                                                              |                                                                    |                                                      |                            |
| Surname:                                                                                                                    |                                                                                                                                                                                                               | Name:                                                              |                                                                    |                                                      |                            |
| Shade the correct box of                                                                                                    | considering that, at                                                                                                                                                                                          | least, one of them                                                 | n is valid. <b>(10 minutes)</b>                                    |                                                      |                            |
| I From tensile tests we ob<br>□ yield strength<br>□ strain under maxim                                                      | otain material ductil<br>um load                                                                                                                                                                              | lity parameters suc<br>□ elongatio<br>□ tensile st                 | ch as:<br>n at break<br>rength                                     |                                                      |                            |
| 2 The extensometer used<br>□ registers elongation<br>□ directly measures th                                                 | in the tensile test of<br>ne strain                                                                                                                                                                           | of a specimen<br>] always requires (<br>] evaluates the se         | contact points with the s<br>paration of the clamps t              | specime<br>that fix t                                | en<br>he specime           |
| <ul> <li><b>3</b> The necking of a specin</li> <li>□ begins when it reached</li> <li>□ is related to the reduced</li> </ul> | nen tested under te<br>es the maximum po<br>ction of area                                                                                                                                                     | ension:<br>oint of the curve                                       | <ul><li>☐ is very low or zero</li><li>☐ is measured with</li></ul> | o in britt<br>the exte                               | le materials<br>ensometer. |
| <ul> <li><b>4</b> The unloading in the ter</li> <li>□ softens steel</li> <li>□ stiffens steel</li> </ul>                    | nsile test of a steel<br>C<br>C                                                                                                                                                                               | from the plastic zo<br>increases the yie<br>makes steel mor        | one (without breaking):<br>Id strength of steel<br>e flexible.     |                                                      |                            |
| 5 The ductile type fracture<br>□ with a shiny appearan<br>□ of low roughness                                                | e is characterized b<br>nce C                                                                                                                                                                                 | by a breaking surfa<br>with coalescent r<br>with reduction of      | ice:<br>nicrovoids (grouped)<br>notorious area                     |                                                      |                            |
| 6 Brittle type fracture is ch<br>□ with a matte appeara<br>□ low roughness (cleav                                           | naracterized by hav<br>nce C<br>age) C                                                                                                                                                                        | ving a breaking sur<br>] with coalescent r<br>] with small or no a | face:<br>nicrovoids (grouped)<br>area reduction                    |                                                      |                            |
| The footprint left by a sp                                                                                                  | oherical indenter or                                                                                                                                                                                          | n the surface of a s                                               | steel:                                                             |                                                      |                            |
|                                                                                                                             | <ul> <li>allows to obtain the Vickers hardness</li> <li>is produced with a sclerometer</li> <li>allows to obtain the Rockwell A hardness</li> <li>Can determine the Brinell or Rockwell B hardness</li> </ul> |                                                                    |                                                                    |                                                      |                            |
| <ul> <li>The admissible stress (</li> <li>Iess than the theoreti</li> <li>independent of the get</li> </ul>                 | $\sigma_{\rm C}$ ) necessary to such a cal tensile strength eometry of the mat                                                                                                                                | uddenly propagate<br>n of the material (ơn<br>rerial               | a crack (of length "a") i<br>R)                                    | is<br>al to a <sup>1/</sup><br>al to a <sup>-1</sup> | 2<br>/2                    |
| <b>9</b> It has been proven, exp                                                                                            | erimentally, that th                                                                                                                                                                                          | e behavior in fatig                                                | ue of low number of cyc                                            | cles in c                                            | omponents                  |

- □ Paris
- Coffin-Manson
- Palmgren MinerBasquin
- 10.- The endurance of a material
  - $\Box$  is its fatigue limit
  - □ is determined from Wöhler's diagram
- $\begin{tabular}{ll} $\square$ is represented as $\Delta K_{th}$ \\ $\square$ is its fatigue life \end{tabular}$