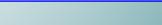


Química

BLOQUE II: REACCIÓN QUÍMICA COMO BASE DE PROCESOS INDUSTRIALES

TEMA 7: REACCIONES OXIDACIÓN-REDUCCIÓN



Ana Carmen Perdigón Aller Marina González Barriuso Miguel García Iglesias

DEPARTAMENTO DE QUÍMICA E INGENIERÍA
DE PROCESOS Y RECURSOS

Este material se publica bajo la siguiente licencia:

<u>Creative Commons BY-NC-SA 4.0</u>

TEMA 7. REACCIONES OXIDACIÓN-REDUCCIÓN

- 1. Conceptos básicos.
- 2. Electroquímica.
- 3. Serie electromotriz: semirreacciones y potenciales de electrodo.
- 4. Aplicaciones.
- 5. Reacciones espontaneas: pilas.
- 6. Fuerza electromotriz y energía libre.
- 7. Efecto de la concentración sobre el voltaje: ecuación de Nerst.

Estado de oxidación

- Estado de oxidación (o número de oxidación) de un átomo en una molécula
 - Es un número que se le asigna y que indica de modo aproximado la estructura electrónica de ese átomo en esa molécula
 - Regla general de asignación de estados de oxidación (e.o.):
 - se imagina la situación límite (no real) de que los electrones de un enlace se hayan transferido completamente al átomo más electronegativo del enlace
 - el estado de oxidación de cada átomo es la carga que tiene tras esta operación mental
 - e.o. positivo: el átomo pierde total o parcialmente electrones en la molécula respecto al átomo aislado neutro
 - e.o. negativo: el átomo gana total o parcialmente electrones en la molécula respecto al átomo aislado neutro

Estado de oxidación

- Reglas básicas de asignación de estados de oxidación:
 - Los e.o. de los átomos en sus compuestos de determinan aplicando las reglas siguientes, en orden, hasta donde sea necesario:
 - El e.o. de un átomo individual sin combinar químicamente con otros elementos es 0
 - La suma de los e.o. de todos los átomos de una molécula neutra es 0; la de todos los átomos de un ión es la carga del ión
 - 3. En sus compuestos, los metales alcalinos (Grupo 1) tienen e.o. +1 y los alcalinotérreos (Grupo 2) tienen e.o. +2
 - 4. En sus compuestos, el e.o. del F es -1
 - 5. En sus compuestos, el e.o. del H es +1
 - 6. En sus compuestos, el e.o. del O es -2
 - 7. En sus compuestos binarios con metales, los elemetos del Grupo 17 (F, Cl, ...) tienen e.o. -1, los del Grupo 16 (O, S, ...) tienen e.o. -2, y los del Grupo 15 (N, P, ...) tienen e.o. -3

REACCIONES OXIDACIÓN-REDUCCIÓN

1. Conceptos básicos

Ejemplos:

$$\overset{0}{O} \qquad \overset{0}{O_{2}} \qquad \overset{+1}{Na} \overset{-1}{H} \qquad \overset{+1}{Na} \overset{-2}{O} \overset{+1}{H} \qquad \overset{+1}{H_{2}} \overset{-2}{O} \qquad \overset{+1}{H_{2}} \overset{-1}{O_{2}}$$

$$\overset{-4}{C} \overset{+1}{H_{4}} \qquad \overset{-3}{C_{2}} \overset{+1}{H_{6}} \qquad \overset{-2}{C_{2}} \overset{+1}{H_{4}} \qquad \overset{-1}{C_{2}} \overset{+1}{H_{2}} \qquad \overset{+1}{C} \overset{+1}{F_{4}} \qquad \overset{+1}{H_{2}} \overset{+2}{C} \overset{-1}{F_{3}}$$

$$\overset{_{+1}}{K}\overset{_{+7}}{Mn}\overset{_{-2}}{O_4} \qquad \overset{_{+7}}{Mn}\overset{_{-2}}{O_4^-} \qquad \overset{_{-3}}{N}\overset{_{+1}}{H_4^+} \qquad \overset{_{+5}}{N}\overset{_{-2}}{O_3^-}$$

$$Fe^{+2}O^{-2} \qquad Fe_{2}O_{3}^{+3} \qquad Fe_{3}O_{4}^{-2} \qquad FeO^{+8/3}O_{4}^{-2} \qquad FeO^{+3}O_{3}$$

$$\stackrel{-3}{N}\stackrel{+1}{H_4}\stackrel{+5}{N}\stackrel{-2}{O_3}$$

Oxidación, reducción y reacción de oxidación-reducción o redox

- Oxidación:
 - aumento del e.o. o pérdida de electrones
- Reducción:
 - disminución del e.o. o ganancia de electrones
- Reacción redox o de oxidación-reducción:
 - reacción de transferencia de electrones, en la que algunos elementos se oxidan y otros se reducen
- Oxidante:
 - reactivo que gana electrones y se reduce
- Reductor:
 - reactivo que cede electrones y se oxida

Oxidación, reducción y reacción de oxidación-reducción o redox

Fe gana electrones y se reduce de +3 a 0

C pierde electrones y se oxida de +2 a +4

 Fe_2O_3 es el oxidante

CO es el reductor

 Fe_2O_3 se reduce a Fe

CO se oxida a CO_2

$$\overset{_{0}}{Cu}(s) + 2\overset{_{+1}}{Ag^{+}}(ac) \to \overset{_{+2}}{Cu^{2+}}(ac) + 2\overset{_{0}}{Ag}(s)$$

Ag gana electrones y se reduce de +1 a 0

Cu pierde electrones y se oxida de 0 a +2

 Ag^+ es el oxidante

Cu es el reductor

 Ag^+ se reduce a Ag

Cu se oxida a Cu^{2+}

Semirreacciones

- Semirreacciones de reducción y de oxidación:
 - cada una de las dos partes en que se separa una reacción redox y en las que se aíslan la reducción (ganancia de e-) y la oxidación (pérdida de e-)

Reacción redox global
semirreacción de reducción
semirreacción de oxidación

$$Cu(s) + 2Ag^{+} \rightarrow Cu^{2+} + 2Ag$$
$$Ag^{+} + e^{-} \rightarrow Ag$$
$$Cu \rightarrow Cu^{2+} + 2e^{-}$$

Ajustes de reacciones redox

- Método del ión-electrón
 - 1. Descomponer los compuestos en sus <u>iones</u> —los que se formarían en disolución acuosa-.
 - 2. Identificar elementos que cambian su número de oxidación y escribir semirreacciones iónicas de oxidación y de reducción.
 - 3. Ajustar las semirreacciones como si éstas tuviesen lugar en medio ácido, con la ayuda de H⁺ y de H₂O.
 - 1. Ajustar los átomos que no sean H ni O
 - 2. Ajustar los O, utilizando H₂O
 - 3. Ajustar los H, utilizando H⁺
 - 4. Ajustar la carga utilizando e
 - 4. Sumar las semirreacciones ponderadas de modo que se equilibre el número de electrones.
 - 1. Los H⁺ y H₂O auxiliares se eliminarán automáticamente en este paso.
 - 5. <u>Completar</u> la reacción con los compuestos o iones que no participan en las oxidaciones y reducciones.
 - 6. Obtener los <u>compuestos</u> que se habían disociado en iones en el paso 1. a partir de esos mismos iones

Ajustes de reacciones redox globales

Ejemplo:

$$KMnO_4 + H_2O_2 + H_2SO_4 \rightarrow O_2 + MnSO_4 + K_2SO_4 + H_2O$$

1.
$$\underline{K}^{+} + \underline{MnO_{4}^{-}} + \underline{H_{2}O_{2}} + \underline{2H}^{+} + \underline{SO_{4}^{2-}} \rightarrow \underline{O_{2}} + \underline{Mn}^{2+} + \underline{SO_{4}^{2-}} + \underline{2K}^{+} + \underline{SO_{4}^{2-}} + \underline{H_{2}O_{4}}$$

2+3.
$$\operatorname{Mn}^{+7} O_4^- \to \operatorname{Mn}^{2+}$$
 $\operatorname{H}_2 \overset{-1}{O_2} \to \overset{0}{O_2}$

$$3.2 \qquad MnO_4^- \rightarrow Mn^{2+} + 4H_2O$$

3.3
$$8H^{+}+MnO_{4}^{-} \rightarrow Mn^{2+} + 4H_{2}O$$
 $H_{2}O_{2} \rightarrow O_{2} + 2H^{+}$

3.4
$$8H^{+}+MnO_{4}^{-}+5e^{-} \rightarrow Mn^{2+}+4H_{2}O$$
 $H_{2}O_{2} \rightarrow O_{2}+2e^{-}+2H^{+}$

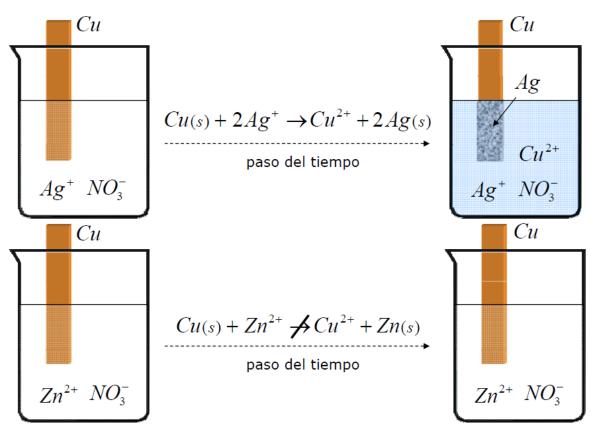
4.
$$(8H^{+}+MnO_{4}^{-}+5e^{-} \rightarrow Mn^{2+}+4H_{2}O) \times 2$$

$$(H_{2}O_{2} \rightarrow O_{2}+2e^{-}+2H^{+}) \times 5$$

$$2MnO_{4}^{-}+5H_{2}O_{2}+6H^{+} \rightarrow 5O_{2}+2Mn^{2+}+8H_{2}O$$

Ajustes de reacciones redox globales

5.
$$2\text{MnO}_{4}^{-} + 5\text{H}_{2}\text{O}_{2} + 6\text{H}^{+} \rightarrow 5\text{O}_{2} + 2\text{Mn}^{2+} + 8\text{H}_{2}\text{O}$$


$$3\text{SO}_{4}^{2-} \rightarrow 3\text{SO}_{4}^{2-}$$

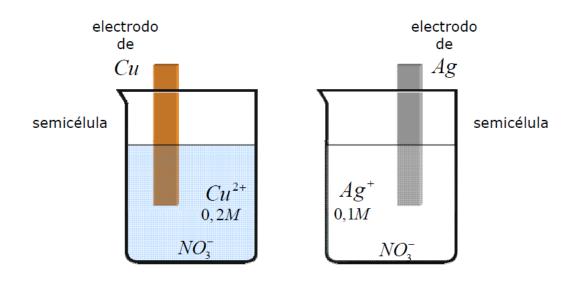
$$2\text{K}^{+} \rightarrow 2\text{K}^{+}$$

$$3\text{SO}_{4}^{-} \rightarrow 5\text{O}_{4} + 2\text{MnO}_{4}^{-} + 5\text{H}_{4}\text{O}_{4} + 6\text{H}^{+} + 3\text{SO}_{4}^{2-} \rightarrow 5\text{O}_{4} + 2\text{Mn}^{2+} + 2\text{SO}_{4}^{2-} + 2\text{K}^{+} + \text{SO}_{4}^{2-} + 8\text{H}_{4}\text{O}_{4}$$

$$2\underline{K}^{+} + 2\underline{M}\underline{n}\underline{O}_{4}^{-} + 5\underline{H}_{2}\underline{O}_{2} + 6\underline{H}^{+} + 3\underline{S}\underline{O}_{4}^{2-} \rightarrow 5\underline{O}_{2} + 2\underline{M}\underline{n}^{2+} + 2\underline{S}\underline{O}_{4}^{2-} + 2\underline{K}^{+} + \underline{S}\underline{O}_{4}^{2-} + 8\underline{H}_{2}\underline{O}$$

6.
$$\left| 2KMnO_4 + 5H_2O_2 + 3H_2SO_4 \rightarrow 5O_2 + 2MnSO_4 + K_2SO_4 + 8H_2O_4 \right|$$

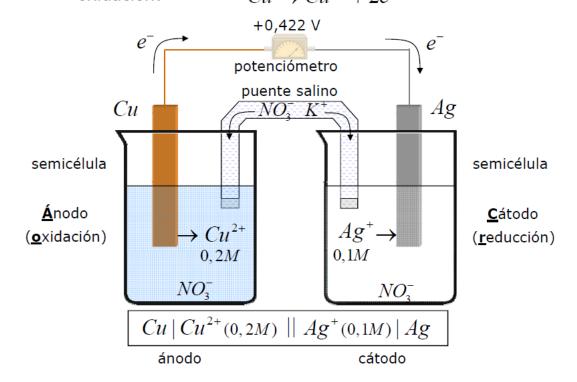
¿Podemos prever si se dará o no una reacción redox? (poder oxidante y reductor)

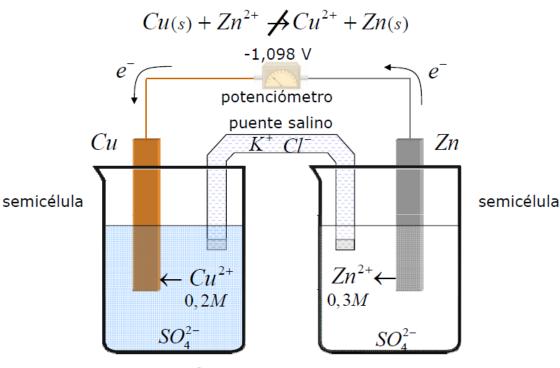

- ΔG
- Potenciales de electrodo (un criterio adicional, sencillo, derivado del anterior)

Semicélulas electroquímicas

¿Podemos separar las semirreacciones de oxidación y de reducción?

$$Cu(s) + 2Ag^+ \rightarrow Cu^{2+} + 2Ag$$


reducción: $Ag^+ + e^- \rightarrow Ag$ oxidación: $Cu \rightarrow Cu^{2+} + 2e^-$


Células electroquímicas

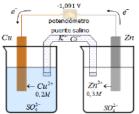
Un instrumento para separar las semirreacciones de oxidación y de reducción en recipientes distintos $Cu(s) + 2Ag^+ \rightarrow Cu^{2+} + 2Ag$

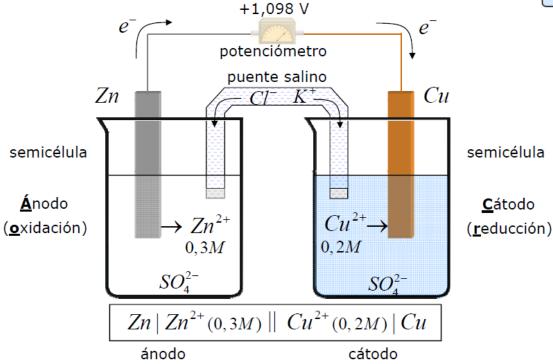
reducción: $Ag^+ + e^- \rightarrow Ag$ oxidación: $Cu \rightarrow Cu^{2+} + 2e^-$

Células electroquímicas

reducción:
$$Cu^{2+} + 2e^{-} \rightarrow Cu$$

oxidación: $Zn \rightarrow Zn^{2+} + 2e^{-}$


$$Zn(s) + Cu^{2+} \rightarrow Zn^{2+} + Cu(s)$$


Células electroquímicas

reducción: $Cu^{2+} + 2e^{-} \rightarrow Cu$

oxidación: $Zn \rightarrow Zn^{2+} + 2e^{-}$

Células electroquímicas

Ejemplo: El aluminio metálico desplaza al ion zinc(II) de sus disoluciones acuosas.

- a) Escribe las semirreacciones de reducción y oxidación y la ecuación global.
- b) ¿Cuál es la notación de la célula electroquímica en la que tiene lugar esa reacción?

$$Al(s) + Zn^{2+}(ac) \rightarrow Al^{3+}(ac) + Zn(s)$$

reducción:
$$Zn^{2+} + 2e^- \rightarrow Zn$$
 ×3 oxidación: $Al \rightarrow Al^{3+} + 3e^-$ ×2 global: $2Al + 3Zn^{2+} \rightarrow 2Al^{3+} + 3Zn$

célula electroquímica:
$$Al \mid Al^{3+} \mid \mid Zn^{2+} \mid Zn$$

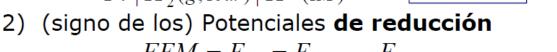
$$Al(s) \mid Al^{3+}(ac) \mid \mid Zn^{2+}(ac) \mid Zn(s)$$

Potenciales de electrodo (escala internacional)

 El voltaje medido en una célula electroquímica es la diferencia de potencial entre sus electrodos, o fuerza electromotriz FEM.

$$|E_{cel}| = E_{mayor} - E_{menor}$$

- Una dif. de potencial de 1 V indica que se realiza un trabajo de 1 J por cada 1 C de carga que pasa por el circuito eléctrico; o que hay suministrar una energía de 1 J para que pase 1 C de carga (según el convenio de signos)
- Podríamos calcular FEM de células electroquímicas hipotéticas si conociésemos los potenciales de sus electrodos, por resta.
- No existe una escala absoluta de potenciales de electrodo.
- Se define una escala arbitraria de potenciales de electrodo, por convenio internacional, por medio de:
 - 1) <u>asignar potencial cero a un electrodo concreto</u>, el electrodo estándar de hidrógeno, y
 - 2) <u>elegir el signo de la FEM</u> de modo que a mayor valor del potencial mayor tendencia a reducirse (poder oxidante).


Potenciales de electrodo (escala internacional)

1) Electrodo de referencia:

electrodo estándar de hidrógeno (EEH)

$$2H^{+}(1M) + 2e^{-} \longrightarrow H_{2}(g, 1bar) Pt | H_{2}(g, 1bar) | H^{+}(1M) E_{H^{+}/H_{2}}^{0} = 0$$

$$E_{H^+/H_2}^0 = 0$$

$$FEM = E_{cel} = E_{cátodo} - E_{ánodo}$$

electrodo en el que hay reducción 🖊

≺electrodo en el que hay OXIdación

HCl(1M

 $H_2(g,1bar)$

- Potencial de reducción de una semicélula cualquiera (un electrodo):
 - Se construye una célula con ella y con un EEH y se mide el voltaje $E_{\it cel}$
 - Se observa si este electrodo actúa de ánodo o de cátodo

si en la semicélula hay reducción (cátodo):

$$E_{\textit{electrodo}} - E_{\textit{H}^{+}/\textit{H}_{2}}^{0} = \left| E_{\textit{cel}} \right| \qquad E_{\textit{electrodo}} = \left| E_{\textit{cel}} \right| > 0$$

si en la semicélula hay oxidación (ánodo):

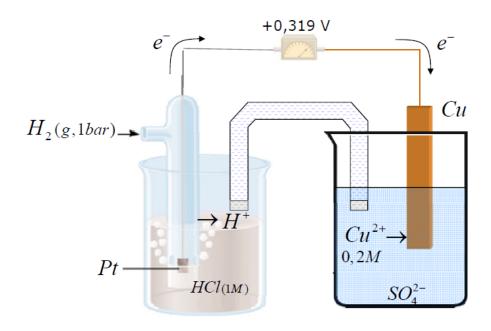
$$E_{{\scriptscriptstyle H^+/H_2}}^{\scriptscriptstyle 0} - E_{{\scriptscriptstyle electrodo}} = \left| E_{{\scriptscriptstyle cel}} \right| \qquad E_{{\scriptscriptstyle electrodo}} = - \left| E_{{\scriptscriptstyle cel}} \right| < 0$$

Potenciales de electrodo (escala internacional)

- Un potencial de reducción >0 indica una mayor capacidad para reducirse que el EEH
 - en el electrodo habrá una reducción y en el EEH una oxidación
 - cuanto más positivo el potencial de reducción, mayor poder oxidante
 - cuanto más arriba/abajo en la escala de potenciales de reducción, mayor poder oxidante
- Un potencial de reducción <0 indica una menor capacidad para reducirse que el EEH
 - en el electrodo habrá una oxidación y en el EEH una reducción
 - Cuanto más negativo el potencial de reducción, mayor poder reductor
 - cuanto más abajo/arriba en la escala de potenciales de reducción, menor poder oxidante, o mayor poder reductor
- Sólo se tabulan los potenciales de electrodos en condiciones estándar a 298K:
 - potenciales estándar de electrodo, o de reducción, a 298K

Potenciales estándar de reducción a 298K

Species	Reduction half-reaction	E° (V)
Oxidized form is strongly oxidiz	zing	
F ₃ /F ⁻	$F_5(g) + 2 e^- \longrightarrow 2 F^-(aq)$	+2.87
Au+/Au	$Au^{+}(aq) + e^{-} \longrightarrow Au(s)$	+1.69
Ce ⁴⁺ /Ce ³⁺	$Ce^{4+}(aq) + e^{-} \longrightarrow Ce^{3+}(aq)$	+1.61
MnO ₄ -, H+/Mn ²⁺ ,H ₂ O	$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \longrightarrow Mn^{2+}(aq) + 4 H_2O(1)$	+1.51
Cl ₄ /Cl̄-	$Cl_2(g) + 2 e^- \longrightarrow 2 Cl^-(aq)$	+1.36
Cr ₂ O ₇ ²⁻ ,H ⁺ /Cr ³⁺ ,H ₂ O	$Cr_2O_7^{2-} + 14 H^+(aq) + 6 e^- \longrightarrow 2 Cr^{3+}(aq) + 7 H_2O(l)$	+1.33
O ₂ , H ⁺ /H ₂ O	$O_2(g) + 4 H^+(aq) + 4 e^- \longrightarrow 2 H_2O(l)$	+1.23;
2,2	2.07	+0.82 at pH =
Br ₂ /Br ⁻	$Br_2(1) + 2 e^- \longrightarrow 2 Br^-(aq)$	+1.09
NO ₃ -,H+/NO,H ₂ O	$NO_3^-(aq) + 4 H^+(aq) + 3 e^- \longrightarrow NO(g) + 2 H_2O(1)$	+0.96
Ag ⁺ /Ag	$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$	+0.80
Fe ³⁺ /Fe ²⁺	$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	+0.77
I ₂ /I ⁻	$I_2(s) + 2 e^- \longrightarrow 2 I^-(aq)$	+0.54
Ó,,H,O/OH-	$O_2(g) + 2 H_2O(1) + 4 e^- \longrightarrow 4 OH^-(ag)$	+0.40;
2,-2	2.67	+0.82 at pH =
Cu ²⁺ /Cu	$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	+0.34
AgCl/Ag,Cl	$AgCl(s) + e^{-} \longrightarrow Ag(s) + Cl^{-}(ag)$	+0.22
H ⁺ /H,	$2 H^{+}(aq) + 2 e^{-} \longrightarrow H_{2}(g)$	0, by definition
Fe ³⁺ /Fe	$Fe^{3+}(aq) + 3e^{-} \longrightarrow Fe(s)$	-0.04
O2,H2O/HO2-OH-	$O_2(g) + H_2O(l) + 2 e^- \longrightarrow HO_2^-(aq) + OH^-(aq)$	-0.08
Pb ²⁺ /Pb	$Pb^{2+}(aq) + 2 e^{-} \longrightarrow Pb(s)$	-0.13
Sn ²⁺ /Sn	$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2 e^{-} \longrightarrow \operatorname{Sn}(s)$	-0.14
Fe ²⁺ /Fe	$Fe^{2+}(aq) + 2 e^{-} \longrightarrow Fe(s)$	-0.44
Zn ²⁺ /Zn	$Zn^{2+}(aq) + 2 e^{-} \longrightarrow Zn(s)$	-0.76
H,O/H,,OH-	$2 H_2O(1) + 2 e^- \longrightarrow H_2(g) + 2 OH^-(aq)$	-0.83;
* *		-0.42 at pH =
A1 ³⁺ /A1	$Al^{3+}(aq) + 3 e^{-} \longrightarrow Al(s)$	-1.66
Mg ²⁺ /Mg	$Mg^{2+}(aq) + 2 e^{-} \longrightarrow Mg(s)$	-2.36
Na ⁺ /Na	$Na^+(aq) + e^- \longrightarrow Na(s)$	-2.71
K ⁺ /K	$K^+(aq) + e^- \longrightarrow K(s)$	-2.93
Li+/Li	$Li^+(aq) + e^- \longrightarrow Li(s)$	-3.05
Reduced form is strongly reduci	ing	

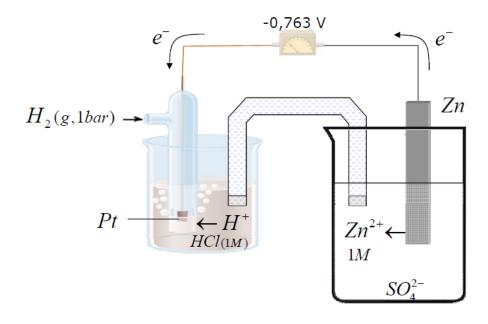

reducirse) **poder oxidante** (tendencia

poder reductor (tendencia ۵ oxidarse)

^{*}For a more extensive table, see Appendix 2B.

Potenciales de reducción a 298K

$\begin{array}{|c|c|c|c|} \hline \textbf{Preparación} & \textbf{Observación} \\ \hline \hline & \textit{Cu} \, | \, \textit{Cu}^{\, 2+}(0,2M) & \text{cátodo (reducción)} \\ & \textit{Pt} \, | \, \textit{H}_{2}(g,1bar) \, | \, \textit{H}^{+}(1M) & \text{ánodo (oxidación)} \\ \hline & 298K & | E_{cel} \, | \, = 0,319\,V & \textbf{Conclusión} \\ \hline & & E(\textit{Cu}^{\, 2+}(0,2M) \, | \, \textit{Cu}) \, = 0,319\,V & \text{(no se tabula)} \\ \hline \end{array}$



Potenciales de reducción a 298K

Preparación	Observación		
$Cu \mid Cu^{2+}(0, 2M)$ $Pt \mid H_{2}(g, 1bar) \mid H^{+}(1M)$	cátodo (reducción) ánodo (oxidación)	$Pt \mid H_2(g, 1bar) \mid H^+(1M) \mid Cu^{2+}(0, 2M) \mid Cu$	
$\frac{10 \Pi_2(g,1bar) \Pi_1(mr)}{298K}$	$\left E_{cel} \right = 0,319 V$	Conclusión $E(Cu^{2+}(0, 2M) Cu) = 0,319V$ (no se tabula)	
$Cu \mid Cu^{2+}(1M)$ $Pt \mid H_2(g,1bar) \mid H^+(1M)$	cátodo (reducción) ánodo (oxidación)	$Pt \mid H_{2}(g, 1bar) \mid H^{+}(1M) \mid Cu^{2+}(1M) \mid Cu$	
298 <i>K</i>	$\left E_{cel}\right = 0,340V$	Conclusión $E_{298}^{0}(Cu^{2+} Cu) = 0,340V$ (SE TABULA)	
$Ag \mid Ag^{+}(1M)$ $Pt \mid H_{2}(g,1bar) \mid H^{+}(1M)$	cátodo (reducción) ánodo (oxidación)	$Pt \mid H_2(g, 1bar) \mid H^+(1M) \mid \mid Ag^+(1M) \mid Ag$	
298 <i>K</i>	$\left E_{cel} \right = 0,800 V$		

Potenciales de reducción a 298K

Preparación	Observación
$Zn \mid Zn^{2+}(1M)$	ánodo (oxidación) $Zn \mid Zn^{2+} \mid \mid H^{+}(1M) \mid H_{2}(g,1bar) \mid Pt$
$Pt \mid H_2(g,1bar) \mid H^+(1M)$	cátodo (reducción) $\int_{0}^{\infty} \frac{2\pi}{ \Omega } \frac{2\pi}{ \Omega } \frac{ \Omega }{ \Omega } \frac$
298 <i>K</i>	$ E_{cel} = 0,763V$ Conclusión
27011	$E_{298}^{0}(Zn^{2+} Zn) = -0,763V$ (SE TABULA)

Potenciales estándar de reducción a 298K

Electrodo	Semirreacción de reducción	$E^{ m o}_{ m 298}$ / V
$Cl_2 \mid Cl^-$	$Cl_2 + 2e^- \rightarrow 2Cl^-$	+1,358
$Ag^+ \mid Ag$	$Ag^+ + e^- \rightarrow Ag$	+0,800
$Cu^{2+} \mid Cu$	$Cu^{2+} + 2e^- \rightarrow Cu$	+0,340
$H^{^+} H_{_2}$	$2H^{2+} + 2e^- \rightarrow H_2$	0
$Zn^{2+} \mid Zn$	$Zn^{2+} + 2e^- \rightarrow Zn$	-0,763

Ej.: La batería de zinc-cloro tiene como reacción neta: $Zn(s)+Cl_2(g)\rightarrow ZnCl_2(ac)$. ¿Cuánto vale el voltaje o FEM de la pila voltaica estándar a 298K?

$$E_{cel}^0 = +1,358V - (-0,763V) = 2,121V$$

Ej.: Semirreacciones, reacción global y voltaje de las pilas estándar cobre-plata y cobre-zinc a 298K?

Red:
$$Ag^{+} + e^{-} \rightarrow Ag$$
 ×2 Red: $Cu^{2+} + 2e^{-} \rightarrow Cu$ Ox: $Cu \rightarrow Cu^{2+} + 2e^{-}$ Ox: $Zn \rightarrow Zn^{2+} + 2e^{-}$
$$Cu + 2Ag^{+} \rightarrow Cu^{2+} + 2Ag$$

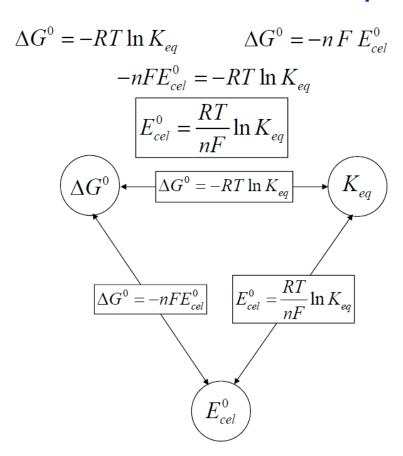
$$E^{0}_{cel} = +0,800V - 0,340V = 0,460V$$

$$E^{0}_{cel} = +0,340V - (-0,763V) = 1,103V$$

4. Reacciones espontáneas

Relación E_{cel}-ΔG

- $-\Delta G$ es el trabajo que se puede obtener de un proceso a P y T constantes. (Cuando la energía interna se convierte en trabajo, es necesario convertir parte de ella en calor.)
- La carga que circula por una célula electroquímica en la que se transfieren n mol de e^- , es: n F $1F = 96485 \ C / mol \ e^-$
- El trabajo eléctrico que realiza una pila es: $w_{elec} = n F E_{cel}$
- Luego: $\Delta G = -n F E_{cel}$ $\Delta G^0 = -n F E_{cel}^0$
- Reacción (a P,T ctes) **espontánea** si $\Delta G < 0$; es decir, si $E_{cel} > 0$


Si una reacción redox tiene $E_{\it cel}\!\!>\!\!0$ en unas condiciones de concentraciones y temperatura dadas, es espontánea en esas condiciones.

Si tiene E_{cel} <0, la reacción inversa es espontánea en esas condiciones.

4. Reacciones espontáneas

Relación Eo_{cel}-K_{eq}

Ecuación de Nernst

a)
$$Cu | Cu^{2+}(0,2M) | | Ag^{+}(0,1M) | Ag$$

$$E_{cel}^0 = +0,460 V$$

b)
$$Zn | Zn^{2+}(0,3M) | | Cu^{2+}(0,2M) | Cu$$

$$E_{cel}^0 = +1,103 V$$

¿Cómo cambian los potenciales con las concentraciones?

$$\Delta G = \Delta G^0 + RT \ln Q$$

$$\Delta G = \Delta G^0 + RT \ln Q \qquad \Delta G = -nF E_{cel} \quad \Delta G^0 = -nF E_{cel}^0$$

$$-nFE_{cel} = -nFE_{cel}^{0} + RT \ln Q$$

$$E_{cel} = E_{cel}^{0} - \frac{RT}{nF} \ln Q$$
 Ecuación de Nernst

$$T = 298K \quad E_{cel} = E_{cel}^{0} - \frac{0,02569 \, V}{n} \ln Q = E_{cel}^{0} - \frac{0,0592 \, V}{n} \log Q$$

Ecuación de Nernst

a)
$$Cu |Cu^{2+}(0,2M)| |Ag^{+}(0,1M)| Ag$$
 $E_{cel,298} = +0,422 V$ $E_{cel,298}^{0} = +0,460 V$

b)
$$Zn | Zn^{2+}(0,3M) | | Cu^{2+}(0,2M) | Cu | E_{cel,298} = +1,098 V | E_{cel,298}^0 = +1,103 V$$

a)
$$Cu + 2Ag^{+} \rightarrow Cu^{2+} + 2Ag$$
 $n = 2$

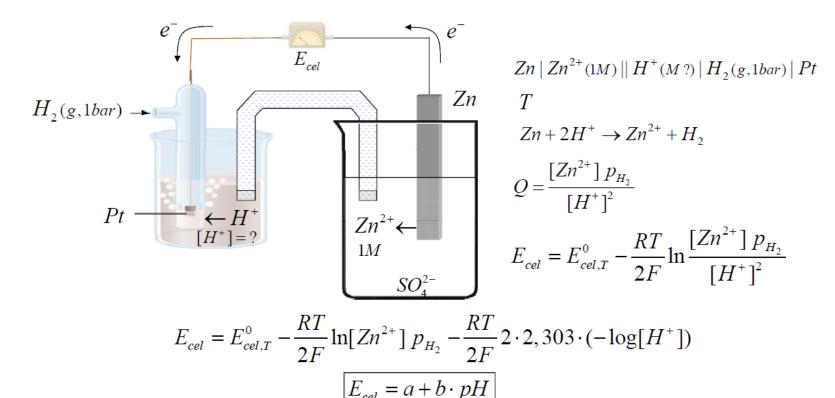
$$E_{cel,298} = 0,460 V - \frac{0,02569 V}{2} \ln \frac{[Cu^{2+}]}{[Ag^{+}]^{2}} = 0,460 V - \frac{0,02569 V}{2} \ln \frac{0,2}{0,1^{2}}$$

$$= 0,460 V - 0,038 V = 0,422 V$$

b)
$$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$$
 $n = 2$

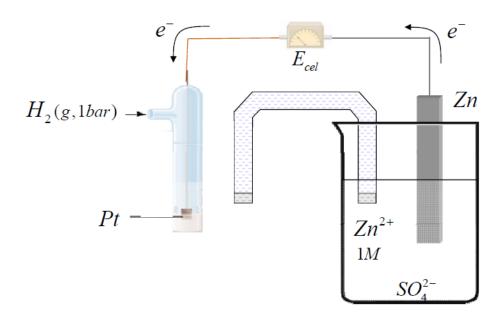
$$E_{cel,298} = 1{,}103 V - \frac{0{,}02569 V}{2} \ln \frac{[Zn^{2+}]}{[Cu^{2+}]} = 1{,}103 V - \frac{0{,}02569 V}{2} \ln \frac{0{,}3}{0{,}2}$$

$$= 1{,}103 V - 0{,}005 V = 1{,}098 V$$


UC UNIVERSIDAD DE CANTABRIA

4. Efecto de las concentraciones sobre los potenciales

Pila Daniells



Fundamento del pH-metro

En cualquier célula electroquímica en que H+ intervenga en una semicélula, el voltaje varía linealmente con el pH de dicha semicélula


Fundamento del pH-metro

$$\left| E_{cel} = a + b \cdot pH \right|$$

En cualquier célula electroquímica en que H+ intervenga en una semicélula, el voltaje varía linealmente con el pH de dicha semicélula

Uso del pH-metro

