
TEMA 3. RAMIFICACIÓN E ITERACIÓN

Programación

Javier González Villa
David Lázaro Urrutia

DEPARTAMENTO DE MATEMÁTICA APLICADA
Y CIENCIAS DE LA COMPUTACIÓN

Este material se publica bajo la siguiente licencia:
Creative Commons BY-NC-SA 4.0

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.es_ES


Contenidos
1. Ramificación

1. Operaciones de control de flujo
2. Estructuras de control de flujo

2. Iteración
1. Estructuras de control de flujo

3. Instrucciones adicionales de control

G1962 - Programación Grado en Ingeniería Civil



1. Ramificación

• Permite implementar decisiones en nuestros algoritmos, a través de estructuras de 
control de flujo condicionales.

• Se basa en tres grupos básicos de operaciones (comparación, lógica y sangrado) para 
establecer los caminos de código a ejecutar.

G1962 - Programación Grado en Ingeniería Civil



1.1. Operaciones de control de flujo

Comparación: Conjunto de operaciones que permiten comparar el valor de dos variables 
retronando un valor booleano como respuesta (True/False). 

G1962 - Programación Grado en Ingeniería Civil

• Permite comparar el valor de variables de 
tipo entero (int), decimal (float) o cadenas 
(string).

• En el caso numérico, simplemente realiza la 
operación matemática de comparación.

• En el caso de las cadenas compara el orden 
alfabético de la sucesión de caracteres, a 
través de sus códigos ASCII.

Operador Ejemplo Resultado

>, >= 3 > 2 True

<, <= 3 < 2 False

== ‘hola’ == ‘hola’ True

!= 3.0 != 3 False



1.1. Operaciones de control de flujo

Lógica: Conjunto de conectores lógicos y relaciones para la implementación de afirmaciones 
propias de la lógica proposicional.

G1962 - Programación Grado en Ingeniería Civil

• Permite operar con variables de tipo booleano
para obtener afirmaciones lógicas.

• Los operadores clásicos son los siguientes:
• not B: niega el valor del booleano indicado (de True 

a False o de False a True).
• B1 and B2: retorna True solo en el caso de que 

ambos valores booleanos sean True (si B1 y B2 
entonces…).

• B1 or B2: retorna False solo en el caso de que 
ambos valores booleanos sean False (si B1 o B2 
entonces…). 

B1 B2 B1 and B2 B1 or B2

True True True True

True False False True

False True False True

False False False False



1.1. Operaciones de control de flujo

Sangrado: Sangrar (mover ligeramente a la derecha) las líneas de código para indicar 
pertenencia a una clase, función, método u otro bloque de código.

G1962 - Programación Grado en Ingeniería Civil

Niveles de Sangrado
Cada TAB define un nuevo nivel.

• Se puede utilizar con cualquier tipo de instrucción y solo consiste en tabular una vez 
hacia la derecha indicando pertenencia.

• Las instrucciones definirán un bloque de código y tendrán una jerarquía de ejecución 
donde siempre la instrucción con menor nivel de sangrado primará.



1.2. Estructuras de control de flujo

Condicional: permite decidir por cuál alternativa seguirá el flujo del programa 
dependiendo del resultado de la evaluación de una condición. 

• Estructura:

if condición 1:

bloque 1

G1962 - Programación Grado en Ingeniería Civil

if condición 1:

bloque 1

else:
bloque 2

if condición 1:

bloque 1

elif condición 2:

bloque 2

else:
bloque 3



1.2. Estructuras de control de flujo

Condicional: permite decidir por cuál alternativa seguirá el flujo del programa 
dependiendo del resultado de la evaluación de una condición. 

• Estructura:

if condición 1:

bloque 1

elif condición 2:
bloque 2

…

elif condición n:
bloque n

else:
bloque n + 1

G1962 - Programación Grado en Ingeniería Civil



1.2. Estructuras de control de flujo

Condicional: permite decidir por cuál alternativa seguirá el flujo del programa 
dependiendo del resultado de la evaluación de una condición. 

• Estructura:

match variable:

case condición 1:

bloque 1

…

case condición n:

bloque n

case _:
bloque n + 1

G1962 - Programación Grado en Ingeniería Civil



1.2. Estructuras de control de flujo
Anidación: inclusión de una estructura de control dentro de otra estableciendo un orden 
jerárquico.

• Ejemplo:

if condición 1:
bloque 1
if condición 2:

bloque 2
…
if condición n:

bloque n
else:

bloque n + 1

G1962 - Programación Grado en Ingeniería Civil

• Permite automatizar y optimizar procesos de 
decisión basados en condiciones.

• Ayuda a plasmar de forma más ordenada 
procesos de decisión complejos.

• Organiza el código de forma precisa plasmando 
niveles de evaluación de condiciones.

• Hay que mantener un balance entre anidación 
y secuencias condicionales y lógicas extensas 
para favorecer la legibilidad del código.



1.2. Estructuras de control de flujo

G1962 - Programación Grado en Ingeniería Civil

Buenas prácticas:

• Escribir condiciones claras y concisas, optimizando la lógica booleana y los operadores condicionales.

• Evitar anidamientos excesivos o redundancias.

• Emplear nombres descriptivos para las variables.

• Comentar las estructuras condicionales complejas.

Ejemplos (errores):



2. Iteración

G1962 - Programación Grado en Ingeniería Civil

• Permite implementar bucles en nuestros algoritmos, a través de estructuras de 
control de flujo iterativas y condicionales.

• Se basa en los mismos tres grupos básicos de operaciones (comparación, lógica y 
sangrado) para establecer los caminos de código a ejecutar o la permanencia en un 
bucle.



2.1. Estructuras de control de flujo

Bucle: Conjunto de instrucciones cuya ejecución se repite hasta que una determinada 
condición de salida se vea satisfecha. 

• Estructura (while):

• Se debe tener especial cuidado en 
que las variables utilizadas como 
condición tengan un criterio de 
parada ya que sino puede estar 
ejecutando infinitamente.

while condición:

bloque

G1962 - Programación Grado en Ingeniería Civil



2.1. Estructuras de control de flujo

Bucle: Conjunto de instrucciones cuya ejecución se repite hasta que una determinada 
condición de salida se vea satisfecha. 

• Estructura (for):

• Iterables: listas, tuplas, cadenas y diccionarios 
(solo claves).

• La variable que se itera puede utilizarse dentro 
del bloque de código y hay que tener en cuenta que 
cambia de valor en cada iteración.

for variable in iterable:

bloque

G1962 - Programación Grado en Ingeniería Civil



2.1. Estructuras de control de flujo

Anidación: inclusión de una estructura de control dentro de otra estableciendo un orden 
jerárquico.

• Ejemplo:

for fila in matriz:

for elemento in fila:

bloque

G1962 - Programación Grado en Ingeniería Civil

• Permite manejar estructuras de datos 
multidimensionales como matrices.

• Facilita la resolución de problemas con varios 
niveles de iteración como combinaciones, 
permutaciones o comparación cruzada.

• Mejora la legibilidad y optimiza el código.

• La anidación excesiva puede aumentar 
significativamente el coste computacional.

while condicion1:

while condicion2:

bloque



2.1. Estructuras de control de flujo

Bucle: Conjunto de instrucciones cuya ejecución se repite hasta que una determinada 
condición de salida se vea satisfecha. 

G1962 - Programación Grado en Ingeniería Civil

for while

Número de iteraciones predefinidas 
en el código.

El número de iteraciones no está 
limitado.

No puede implementar cualquier 
tipo de algoritmo.

Puede implementar cualquier tipo 
de algoritmo incluido los realizados 

con bucles for.

Se utiliza generalmente para 
recorrer elementos finitos.

Se utiliza para establecer criterios 
de parada condicionales más 

complejos.

Puede dar errores de utilización de 
datos iterados.

Puede dar errores de criterio de 
parada.



2.1. Estructuras de control de flujo

Bucle: Conjunto de instrucciones cuya ejecución se repite hasta que una determinada 
condición de salida se vea satisfecha. 

G1962 - Programación Grado en Ingeniería Civil

• Repetición de tareas o cálculos recurrentes.

• Recorrido de estructuras de datos para búsquedas, 
ordenación, filtrado, etc.

• Interacción con el usuario.



3. Instrucciones adicionales de control

Comandos de control de flujo:

• range(inicio, parada, paso): genera una lista 
iterable con los valores indicados.

• continue: salta a la siguiente iteración sin 
ejecutar el resto del bloque.

• break: para el bucle y no permite realizar el 
resto de iteraciones.

G1962 - Programación Grado en Ingeniería Civil

https://docs.python.org/es/3.13/tutorial/d
atastructures.html#looping-techniques

https://docs.python.org/es/3.13/tutorial/datastructures.html

