open
course
ware

Programacion

" TEMA 4. DESCOMPOSICION, ABSTRACCION Y FUNCIONES

function() ¢

()=

Javier Gonzalez Villa

David Lazaro Urrutia

DEPARTAMENTO DE MATEMATICA APLICA '
Y CIENCIAS DE LA COMPUTACION

Este material se publica bajo la siguiente lic
Creative Commons BY-NC-SA 4.0

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.es_ES

Contenidos

1. Descomposicién
2. Abstraccién

3. Funciones
1. Definicién de funciones
2. Llamadas a funciones

3. Aclaraciones
4. Modularidad

5. Recursion

Iterativo vs Recursivo

Divide / Decrementa y Venceras
Induccién matematica
Estructura recursiva

oL e e

Ejemplos

G1962 - Programacién Grado en Ingenieria Civil

1. Descomposiciéon

» Caracteristica de la programacion que permite dividir el codigo en modulos.

* Permite fragmentar el cédigo de manera estructurada y coherente dando sentido a los
modulos implementados.

* Cada moédulo es autocontenido y puede ser utilizado de manera independiente,
Incrementando su reutilizacion.

* En proyectos grandes permite tener el codigo ordenado y estructurado reduciendo el
tiempo de actualizacion de las implementaciones y etapas de validacion.

* La descomposicion puede realizarse de menor a mayor escala desde funciones

pasando por clases y acabando en modulos completos que alojen multiples clases y
funciones.

G1962 - Programacién Grado en Ingenieria Civil

1. Descomposiciéon

Moédulo 1
‘ Funcion 1 H Funcion 2 H Funcion 3 ’
Clase 1 Clase 2

] Método 1
Método 1

Método 2
Método 2

Método 3

G1962 - Programacién

Moédulo 2

‘ Funcion 1

‘ Funcion 2 ’

‘ Funcion 3

‘ Funcion 4 ’

‘ Funcion 5 }J

Clase 1

Atributos

Método 1

\ 4
Método 2

Método 3

Grado en Ingenieria Civil

2. Abstraccion

» Caracteristica de la programaciéon que permite utilizar modulos o funciones sin
necesidad de conocer su implementacion.

* Permite utilizar codigo de terceros solamente entendiendo la documentacion.

* Incrementa la reutilizacion mediante la vision de los modulos o funciones como cajas
negras las cuales tan solo tienen unas entradas y producen unas salidas.

* Es inherente a proyectos grandes o librerias con multitud de funciones.

a Funcion:
b Raices ecuacion » Raices
segundo grado

()

G1962 - Programacién Grado en Ingenieria Civil

3. Funciones

* Bloques de cédigo autocontenidos y reutilizables que permiten la automatizaciéon de
calculos recurrentes.

« Kl proceso para trabajar con funciones sigue los siguientes pasos:

1. Creacion de la funcion con la tarea especifica que queremos automatizar definiendo los
siguientes parametros:

Nombre de la funcion: debe ser descriptivo de la tarea que realiza dicha funcién.

Argumentos: entradas que recibe la funcién para realizar los calculos (si1 es que los necesita).
Documentacion: detalles de como usar y los calculos que realiza la funcion.

Cuerpo de la funciéon: bloque de cédigo que implementa la tarea que queremos que desarrolle la
funcion.

Retorno: valor o valores que devuelve la funciéon como resultado de nuestros calculos.

2. Llamada o invocacion de la funcion con unos parametros especificos de entrada.

G1962 - Programacién

Grado en Ingenieria Civil

3. Funciones

def sol_ecuacion_grado2(a, b, c):
Input: a, float coeficiente principal
b, float coeficiente secundario
c, float termino independiente
Retorna las raices de la ecuacidn en caso de que estas existan

1. if(a == @):

return -c/b
else:
discriminante = (b**2)-(4%a*c)
if(discriminante == @):
return -b/(2%a)

°* Argumentos e,

® return ((-b+(discriminante®**(1/2)))/(2%a)

Cuerpo de la funcién ,(-b-(discriminante®**(1/2)))/(2*a))

help(sol_ecuacion_grado2)

23 Help on function sel_ecuacion_grado2 in module _ main__
.

sol_ecuacion_grado2(a, b, c)
Input: a, fleoat coeficiente principal
b, float coeficiente secundario
c, float termino independiente
Retorna las raices de la ecuacidn en caso de que estas existan

E}o solucion = sol_ecuacion_grado2(0,4,2)

solucion

-0.5

G1962 - Programacion Grado en Ingenieria Civil

. Funciones

import math . .
help(math) impor t math

help(math.sin)

Help on built-in module math:

NAME
math

Help on built-in function sin in meodule math:

DESCRIPTION
This module provides access to the mathematical functions
defined by the C standard.

sin(x, /)
Return the sine of x (measured in radians).

FUNCTIONS
acos(x, /)
Return the arc cosine (measured in radians) of x.

The result is between @ and pi. -
“ P import math
acosh(x, /) help(math.pi)
Return the inverse hyperbolic cosine of x.
Help on float object:
asin(x, /)

Return the arc sine (measured in radians) of x.

class fleat(object)
float(x=0, /)

The result is between -pi/2 and pi/2.
asinh(x, /) Convert a string or number to a fleoating point number, if possible.
Return the inverse hyperbolic sine of x.
Methods defined here:

atan(x, /)
Return the arc tangent (measured in radians) of x.

__abs_ (self, /)

The result is between -pi/2 and pi/2. abs(self)

__add__(self, value, /)
Return self+value.

atan2(y, x, /)
Return the arc tangent (measured in radians) of y/x.

Unlike atan(y/x), the signs of both x and y are considered. __bool_ (self, /)
atanh(x, /) True if self else False
Return the inverse hyperbolic tangent of x.
__ceil_ (self, /)
ceil(x, /) . Return the ceiling as an Integral.
Return the ceiling of x as an Integral.

G1962 - Programacion Grado en Ingenieria Civil

3.1. Definicion de funciones

Funcion: subalgoritmo que describe una secuencia de ordenes.

* Estructura:

def nombre_funcién(argumentos)

def sol_ecuacion_grado2(a,b,c):

bloque if(a==0):
return -c/b
return retorno else:
discriminante = (b*#¥2)-(4*a%*c)
if(discriminante == 0):
return -b/(2%*a)
* Argumentos: variables que se introducen en la slsa:

return ((-b+(discriminante*#*(1/2)))/(2*a)

funcién y son utilizadas en el bloque de codigo. , (-b-(discriminante**(1/2)))/(2%a))

* Retorno: variables que retorna la funcién como
resultado de la ejecucion del bloque de codigo.

G1962 - Programacion Grado en Ingenieria Civil

3.2. Llamadas a funciones

Llamada a funcion: invocacion de un bloque de cédigo contenido en una funcion.

Estructura:
retorno = nombre_funcién(argumentos)

* Para realizar una llamada a funciéon ha de
referirse a ella por un nombre declarado
previamente.

* Se ha de tener en cuenta los argumentos que
requiere y las variables retornadas.

* Permite incrementar el grado de modularidad
haciendo nuestro codigo mas legible.

G1962 - Programacion

solucion
solucion

-0.5

solucion
solucion

-1.0

solucion
solucion

sol_ecuacion_grado2(0,4,2)

sol_ecuacion_grado2(2,4,2)

sol_ecuacion_grado2(1,4,3)

(-1.0, -3.0)

Grado en Ingenieria Civil

3.3. Aclaraciones

« El parametro abstracto definido dentro
de la funciéon no afecta al bloque de
codigo que realiza la llamada.

e Las variables utilizadas dentro de la
funcion se pierden al acabar la ejecucion
de la misma.

e Sila funcion no tiene return retorna
None.

e Una funcion no puede redefinir variables
de fuera de la misma, pero si
consultarlas.

G1962 - Programacion

def suma(x, y):
res = X + y
return res

res = 1000
print("Resultade de la suma: ",suma(4, 6))
print("Valor de la variable res: ",res)

Resultado de la suma: 1@
Valor de la variable res: 1000

def suma(x, y):
res = x + y

print(suma(4, 6))

None

def suma():
res = x +y
z = 1000
return res

100

100

3@
print("Resultadc de la suma: ",suma())
print(“Valor de la variable z: “,z)

Resultado de la suma: 200
Valor de la variable z: 3@

Grado en Ingenieria Civil

4. Modularidad

Modularidad: caracteristica de un sistema dividido en partes que interactuan entre si.

* KEstructura:

from math import *

* from libreria import funcion

import math

* import libreria from math smport cos
P—————
* S1tenemos una libreria de funciones que hemos e
creado previamente, podemos llamar a las funciones e
de la misma importandolas en nuestro nuevo cédigo Sl <
de manera individual o en conjunto (*). T e

import matplotlib

 Permiten abstraerse de la implementacion de las

matplotlib.pyplot.plot([1,2,3],[1,2,3])
mismas centrandose solo en los argumentos [<metplotib.Lines.Line2 rt Ox37d2906>
requeridos y los resultados retornados.

matplotlib.pyplot.show()

G1962 - Programacion Grado en Ingenieria Civil

4. Modularidad

Modularidad: caracteristica de un sistema dividido en partes que interactuan entre si.

* Librerias por defecto en Python:

https://docs.python.org/es/3/library/index.html

 Instalacion de librerias adicionales de otros desarrolladores:

G1962 - Programacion Grado en Ingenieria Civil

https://docs.python.org/es/3/library/index.html

5. Recursion

e En matematicas se da el nombre de recursion a la téenica consistente en definir una funcion en
términos de si misma.

* En computacion se llama recursividad a un proceso mediante el que una funcién se llama a si
misma de forma repetida, haciendo uso del resultado anterior, hasta que se satisface alguna
determinada condicion.

» KEstas funciones deben definir un caso base explicito para alguno de sus argumentos para no
caer en posibles bucles infinitos.

* Para implementar una funcion de manera recursiva se deben satisfacer dos condiciones:

1. El problema debe poder escribirse o plantearse de forma recursiva.

2. El problema debe de tener una condicion de fin.

G1962 - Programacién Grado en Ingenieria Civil

5. Recursion

Recursividad: técnica que consiste en que una funcion se invoque a st misma.

* Es muy importante que la funciéon recursiva tenga def Factorial(n):
una condicion de parada, ya que en caso contrario [esultade =
puede existir un bucle infinito. while(i <= n):
resultado = resultado * i
. . . . i = i * l
 Permite dividir las tareas en subtareas mas return resultado
pequenas que son faciles de resolver. factorial(s)
120
return 1*2*3*4 return 1*2*3 return 1*2 return 1
¢ | ¢ | ¢ | ¢ | [87]: def factorial_recursivo(n):
if n == 1:
else:
5-1 4-1 2.1 T return n*factorial_recursivo(n-1)

factorial_recursivo(5)

return 5*(return FR(4))

37]: 120

G1962 - Programacion Grado en Ingenieria Civil

5.1. Iterativo vs Recursivo

 Recursivo:

 Se crean usando llamadas decrecientes o
divididas a la misma funcidn.

e [terativo:

* Los bucles se crean a partir de
instrucciones while y for.

* Puede ser muy dificil encontrar soluciéon * Pueden tener problemas de redundancia

iterativa a algunos problemas concretos.

El codigo es mas largo y complejo de leer,
siendo en algunas ocasiones dificil su
comprension.

Carga de computacion menor al
almacenar los resultados en variables
con diferentes estados en cada iteracion.

G1962 - Programacién

al realizar llamadas repetidas con el
mismo resultado.

El c6digo recursivo usualmente suele ser
mas sencillo y facil de leer.

La carga computacional y de memoria es
mucho mayor al tener que almacenar
todas las llamadas recurrentes.

Grado en Ingenieria Civil

5.1. Iterativo vs Recursivo

e [terativo: Recursivo:

import time
import sys
import time
def factorial_iterativo(n): import sys
resultado = 1
i=2 def factorial_recursivo(n):
if n ==

* 3 return 1

while(i <= n):
resultado = resultado
i=1i+1 else:
return n * factorial_recursivo(n-1)
return resultado -
L. . . inicio = time.time()
inicio = time.time() print("Factorial 1@: ",factorial_recursivo(19))
print(“Factorial 1@: “,factorial_iterativo(10)) fin = time.time()

fin = time.time() print("Memoria: ",sys.getsizeof(factorial_recursivo)*1@," bytes")

print(“"Memoria: ",sys.getsizeof(factorial_iterativo)," bytes") print("Tiempo: "+str(fin-inicio))
print("Tiempo: "+str(fin-inicio))

Factorial 1@: 3628300
Memoria: 1368 bytes
Factorial 10: 36283800 Tiempo: ©.0009965896606445312
Memoria: 136 bytes
Tiempo: ©.08009975433349609375

G1962 - Programacion Grado en Ingenieria Civil

5.1. Iterativo vs Recursivo

e [terativo:

import time
import sys

def suma_iterativa(n):
suma = @
i =0
while (i < n):
suma = suma + 1
i=1i+1
return suma

inicio = time.time()
print(“Suma 25@00: ",suma_iterativa(2508@))
fin = time.time()
print(“Memoria: ",sys.getsizeof(suma_iterativa),"” bytes")
print("Tiempo: "+str(fin-inicio))

Suma 2500: 2500
Memoria: 136 bytes
Tiempo: 0.0

G1962 - Programacion

 Recursivo:

import time
import sys

def suma_recursiva(n):
if n == 1:
return 1
else:
return 1 + suma_recursiva(n-1)

inicio = time.time()
print("Suma 2500: “,suma_recursiva(2509))
fin = time.time()

print("Memoria: ",sys.getsizeof(suma_recursiva)*2508,"

print("Tiempo: "+str(fin-inicio))

Suma 2500: 2500
Memoria: 340000 bytes
Tiempo: ©.0

Grado en Ingenieria Civil

5.2. Divide / Decrementa y Venceras

» La estrategia de Divide y Venceras consiste en subdividir tantas veces como sea necesario un
problema complejo en versiones mas sencillas del mismo problema que si que son posibles de
resolver de manera no muy compleja.

* A partir de la resolucion de estos subproblemas mas sencillos se reconstruye la solucion global
del problema complejo.

* En computacion representa uno de los paradigmas de diseno de algoritmos.

* Las implementaciones recursivas a la hora de resolver problemas estan fundamentadas en la
estrategia de Divide y Venceras junto con el principio de induccién matematica.

SubProb1 SubSol1

SubSol2

SubProb2

G1962 - Programacién Grado en Ingenieria Civil

5.3. Induccion matematica

e La induccién matematica es un método de demostracion finito que se utiliza cuando se trata de
establecer la veracidad de una lista infinita de proposiciones.

* Kl método puede ser utilizado en computacion a la hora de ver si un algoritmo funciona como se
espera.

» La recursion esta fundamentada en el principio de induccion matematica ya que se compone
del caso base o de menor valor y un caso arbitrario n como hipétesis de partida para probar su
siguiente valor n+1.

* S1en ambos se demuestra que es cierto, se probara la afirmacion o algoritmo y por tanto el
correcto funcionamiento del mismo.

G1962 - Programacién Grado en Ingenieria Civil

5.3. Induccion matematica

n-(n+1)
1+424+34+4+:-4+n= >
» Base de la induccion: Para el n = 1: il = 1(12—“)
* Paso inductivo: Suponemos valida para n = k: 1+2+---+k= k'(k;l) (Hipotesis)
Comprobamos validez para n=k+1:
k-(k+1 k?+3k+2 (k+1)-(k+2 k+1)- -((k+1)+1
(1+2+_”+k)+(k+1):%+k+1: +2 +2 (k+)2(+2) (*k+1) ((2+)+ 1)

G1962 - Programacién Grado en Ingenieria Civil

5.4. Estructura recursiva

 Kstructura:

* (Caso base: puede ser tinico o multiple,
pero debe definirse siempre. Debe
contener una sentencia de retorno o
parada que lance la ejecuciéon ordenada de
la pila de llamadas.

* (Caso recursivo: Puede ser tinico o
multiple, pero debe garantizar la
aplicacion de la técnica de Divide y
Venceras o la actualizacion de la variable
que desencadena en el caso base. Espera
la respuesta y la combina con la de la
llamada actual.

G1962 - Programacion

import time

import sys

def factorial_recursivo(n):
if n == 1:
return 1
else:
return n * factorial_recursivo(n-1)

inicio = time.time()
print(“Factorial 10@: ",factorial_recursivo(1@))
fin = time.time()

print(“"Memoria: “,sys.getsizeof(factorial_recursivo)*10,"

print(“"Tiempo: "+str(fin-inicio))

Factorial 1@: 3628300
Memoria: 1368 bytes
Tiempo: ©.80099658966086445312

bytes™)

Grado en Ingenieria Civil

5.5. Ejemplos

n-(n+1)
2

1+2+3+4+-+n=

def sum_n_iterativo(n):

i def sum_n_recursivo(n):

suma = ©

i=20

while (i <= n):
suma = suma + 1
i=i+1

if n ==
return 1
else:

return n + sum_n_recursivo(n-1)

return suma
print("Suma (10 terminos): ",sum_n_recursivo(10))
print("Suma (10 terminos): ",sum_n_iterativo(10))

Suma (1@ terminos): 55
Suma (10 terminos): 55

def sum n_serie(n):
return n*(n+1)/2

print("Suma (10 terminos): ",sum_n_serie(10))

Suma (1@ terminos): 55.0

G1962 - Programacion Grado en Ingenieria Civil

5.5. Ejemplos

e Multiplicacion de dos ntimeros:

def mul_iterativa(a,b):
i 0

def mul recursivo(a,b):
if b == 1:

< b: return a

= res + a

i+1

else:

return a + mul recursivo(a,b-1)
return res

print("Multiplicacion: ",mul_recursivo(5,7))
print("Multiplicacién: ",mul_iterativa(5,7))

Multiplicacién: 35 Multiplicacion: 35

def mul clasica(a,b):

return a*b

print("Multiplicacién: ",mul_iterativa(5,7))

Multiplicacion: 35

G1962 - Programacion Grado en Ingenieria Civil

5.5. Ejemplos

e Sucesion de Fibonacei:

1,1,2,3,5,8,13, ..., Fy_9, Fy1,E, = (B, + F_1)

def fibonacci_iterativo(n):
fnl=1
f_n2 = def fibonacci_recursivo(n):
i=2 if (n == 0) or (n == 1):
while i <= n:
fnn=Ff nl + f n2

return 1
else:

fnl = f_n2 return fibonacci_recursivo(n-1) + fibonacci_recursivo(n-2)
f n2 = f_nn
i=1i+1

print("Fibonacci (término 10): ",fibonacci_recursivo(10))
return f_nn

Fibonacci (término 10): 89

print("Fibonacci (término 10): ",fibonacci_iterativo(10))

Fibonacci (término 10): 89

G1962 - Programacion Grado en Ingenieria Civil

