
TEMA 4. DESCOMPOSICIÓN, ABSTRACCIÓN Y FUNCIONES

Programación

Javier González Villa
David Lázaro Urrutia

DEPARTAMENTO DE MATEMÁTICA APLICADA
Y CIENCIAS DE LA COMPUTACIÓN

Este material se publica bajo la siguiente licencia:
Creative Commons BY-NC-SA 4.0

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.es_ES

Contenidos
1. Descomposición

2. Abstracción

3. Funciones
1. Definición de funciones
2. Llamadas a funciones
3. Aclaraciones

4. Modularidad

5. Recursión
1. Iterativo vs Recursivo
2. Divide / Decrementa y Vencerás
3. Inducción matemática
4. Estructura recursiva
5. Ejemplos

G1962 - Programación Grado en Ingeniería Civil

1. Descomposición

• Característica de la programación que permite dividir el código en módulos.

• Permite fragmentar el código de manera estructurada y coherente dando sentido a los
módulos implementados.

• Cada módulo es autocontenido y puede ser utilizado de manera independiente,
incrementando su reutilización.

• En proyectos grandes permite tener el código ordenado y estructurado reduciendo el
tiempo de actualización de las implementaciones y etapas de validación.

• La descomposición puede realizarse de menor a mayor escala desde funciones
pasando por clases y acabando en módulos completos que alojen múltiples clases y
funciones.

G1962 - Programación Grado en Ingeniería Civil

1. Descomposición

G1962 - Programación Grado en Ingeniería Civil

2. Abstracción

G1962 - Programación Grado en Ingeniería Civil

• Característica de la programación que permite utilizar módulos o funciones sin
necesidad de conocer su implementación.

• Permite utilizar código de terceros solamente entendiendo la documentación.

• Incrementa la reutilización mediante la visión de los módulos o funciones como cajas
negras las cuales tan solo tienen unas entradas y producen unas salidas.

• Es inherente a proyectos grandes o librerías con multitud de funciones.

3. Funciones

• Bloques de código autocontenidos y reutilizables que permiten la automatización de
cálculos recurrentes.

• El proceso para trabajar con funciones sigue los siguientes pasos:

1. Creación de la función con la tarea específica que queremos automatizar definiendo los
siguientes parámetros:

• Nombre de la función: debe ser descriptivo de la tarea que realiza dicha función.
• Argumentos: entradas que recibe la función para realizar los cálculos (si es que los necesita).
• Documentación: detalles de como usar y los cálculos que realiza la función.
• Cuerpo de la función: bloque de código que implementa la tarea que queremos que desarrolle la

función.
• Retorno: valor o valores que devuelve la función como resultado de nuestros cálculos.

2. Llamada o invocación de la función con unos parámetros específicos de entrada.

G1962 - Programación Grado en Ingeniería Civil

3. Funciones

1. Creación de la función:

• Nombre de la función
• Argumentos
• Documentación
• Cuerpo de la función
• Retorno

2. Consulta de documentación

3. Llamada o invocación de la función

G1962 - Programación Grado en Ingeniería Civil

3. Funciones

G1962 - Programación Grado en Ingeniería Civil

3.1. Definición de funciones

Función: subalgoritmo que describe una secuencia de órdenes.

G1962 - Programación Grado en Ingeniería Civil

• Estructura:

• Argumentos: variables que se introducen en la
función y son utilizadas en el bloque de código.

• Retorno: variables que retorna la función como
resultado de la ejecución del bloque de código.

def nombre_función(argumentos)

bloque

return retorno

3.2. Llamadas a funciones

Llamada a función: invocación de un bloque de código contenido en una función.

G1962 - Programación Grado en Ingeniería Civil

• Estructura:

• Para realizar una llamada a función ha de
referirse a ella por un nombre declarado
previamente.

• Se ha de tener en cuenta los argumentos que
requiere y las variables retornadas.

• Permite incrementar el grado de modularidad
haciendo nuestro código más legible.

retorno = nombre_función(argumentos)

3.3. Aclaraciones

G1962 - Programación Grado en Ingeniería Civil

• El parámetro abstracto definido dentro
de la función no afecta al bloque de
código que realiza la llamada.

• Las variables utilizadas dentro de la
función se pierden al acabar la ejecución
de la misma.

• Si la función no tiene return retorna
None.

• Una función no puede redefinir variables
de fuera de la misma, pero si
consultarlas.

4. Modularidad

Modularidad: característica de un sistema dividido en partes que interactúan entre sí.

G1962 - Programación Grado en Ingeniería Civil

• Estructura:

• Si tenemos una librería de funciones que hemos
creado previamente, podemos llamar a las funciones
de la misma importándolas en nuestro nuevo código
de manera individual o en conjunto (*).

• Permiten abstraerse de la implementación de las
mismas centrándose solo en los argumentos
requeridos y los resultados retornados.

• from librería import función

• import librería

4. Modularidad

Modularidad: característica de un sistema dividido en partes que interactúan entre sí.

G1962 - Programación Grado en Ingeniería Civil

• Librerías por defecto en Python:

https://docs.python.org/es/3/library/index.html

• Instalación de librerías adicionales de otros desarrolladores:

https://docs.python.org/es/3/library/index.html

5. Recursión

• En matemáticas se da el nombre de recursión a la técnica consistente en definir una función en
términos de sí misma.

• En computación se llama recursividad a un proceso mediante el que una función se llama a sí
misma de forma repetida, haciendo uso del resultado anterior, hasta que se satisface alguna
determinada condición.

• Estas funciones deben definir un caso base explícito para alguno de sus argumentos para no
caer en posibles bucles infinitos.

• Para implementar una función de manera recursiva se deben satisfacer dos condiciones:

1. El problema debe poder escribirse o plantearse de forma recursiva.

2. El problema debe de tener una condición de fin.

G1962 - Programación Grado en Ingeniería Civil

5. Recursión

Recursividad: técnica que consiste en que una función se invoque a si misma.

G1962 - Programación Grado en Ingeniería Civil

• Es muy importante que la función recursiva tenga
una condición de parada, ya que en caso contrario
puede existir un bucle infinito.

• Permite dividir las tareas en subtareas más
pequeñas que son fáciles de resolver.

5.1. Iterativo vs Recursivo

• Iterativo:
• Los bucles se crean a partir de

instrucciones while y for.

• Puede ser muy difícil encontrar solución
iterativa a algunos problemas concretos.

• El código es más largo y complejo de leer,
siendo en algunas ocasiones difícil su
comprensión.

• Carga de computación menor al
almacenar los resultados en variables
con diferentes estados en cada iteración.

G1962 - Programación Grado en Ingeniería Civil

• Recursivo:
• Se crean usando llamadas decrecientes o

divididas a la misma función.

• Pueden tener problemas de redundancia
al realizar llamadas repetidas con el
mismo resultado.

• El código recursivo usualmente suele ser
más sencillo y fácil de leer.

• La carga computacional y de memoria es
mucho mayor al tener que almacenar
todas las llamadas recurrentes.

5.1. Iterativo vs Recursivo

• Iterativo:

G1962 - Programación Grado en Ingeniería Civil

• Recursivo:

5.1. Iterativo vs Recursivo

• Iterativo:

G1962 - Programación Grado en Ingeniería Civil

• Recursivo:

5.2. Divide / Decrementa y Vencerás

• La estrategia de Divide y Vencerás consiste en subdividir tantas veces como sea necesario un
problema complejo en versiones más sencillas del mismo problema que sí que son posibles de
resolver de manera no muy compleja.

• A partir de la resolución de estos subproblemas más sencillos se reconstruye la solución global
del problema complejo.

• En computación representa uno de los paradigmas de diseño de algoritmos.

• Las implementaciones recursivas a la hora de resolver problemas están fundamentadas en la
estrategia de Divide y Vencerás junto con el principio de inducción matemática.

G1962 - Programación Grado en Ingeniería Civil

5.3. Inducción matemática

• La inducción matemática es un método de demostración finito que se utiliza cuando se trata de
establecer la veracidad de una lista infinita de proposiciones.

• El método puede ser utilizado en computación a la hora de ver si un algoritmo funciona como se
espera.

• La recursión está fundamentada en el principio de inducción matemática ya que se compone
del caso base o de menor valor y un caso arbitrario n como hipótesis de partida para probar su
siguiente valor n+1.

• Si en ambos se demuestra que es cierto, se probará la afirmación o algoritmo y por tanto el
correcto funcionamiento del mismo.

G1962 - Programación Grado en Ingeniería Civil

5.3. Inducción matemática

1 + 2 + 3 + 4 +⋯+ ' = ' ⋅ (' + 1)
2

• Base de la inducción: Para el ' = 1: 1 = ,⋅(,-,)
.

• Paso inductivo: Suponemos valida para n = k: 1 + 2 +⋯+ / = 0⋅(0-,)
. (Hipótesis)

Comprobamos validez para n=k+1:

1 + 2 +⋯+ / + / + 1 = / ⋅ (/ + 1)
2 + / + 1 = /. + 3/ + 2

2 = / + 1 ⋅ (/ + 2)
2 = / + 1 ⋅ (/ + 1 + 1)

2

G1962 - Programación Grado en Ingeniería Civil

5.4. Estructura recursiva

• Estructura:

• Caso base: puede ser único o múltiple,
pero debe definirse siempre. Debe
contener una sentencia de retorno o
parada que lance la ejecución ordenada de
la pila de llamadas.

• Caso recursivo: Puede ser único o
múltiple, pero debe garantizar la
aplicación de la técnica de Divide y
Vencerás o la actualización de la variable
que desencadena en el caso base. Espera
la respuesta y la combina con la de la
llamada actual.

G1962 - Programación Grado en Ingeniería Civil

5.5. Ejemplos

1 + 2 + 3 + 4 +⋯+ ' = ' ⋅ (' + 1)
2

G1962 - Programación Grado en Ingeniería Civil

5.5. Ejemplos

• Multiplicación de dos números:

G1962 - Programación Grado en Ingeniería Civil

5.5. Ejemplos

• Sucesión de Fibonacci:

1, 1, 2, 3, 5, 8, 13, … , ()*+, ()*,, () = () + ()*,

G1962 - Programación Grado en Ingeniería Civil

