function() ¢

Programacion

TEMA 6. PROGRAMACION ORIENTADA A OBJETOS

()-

open
course
ware

Javier Gonzalez Villa

David Lazaro Urrutia

DEPARTAMENTO DE MATEMATICA APLICA '
Y CIENCIAS DE LA COMPUTACION

Este material se publica bajo la siguiente lic
Creative Commons BY-NC-SA 4.0

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.es_ES

Contenidos

1. Programacion Orientada a Objetos
Clases

Objetos

Atributos

Métodos

Herencia y Polimorfismo

SN

Ejemplo

G1962 - Programacién Grado en Ingenieria Civil

1. Programacion orientada a Objetos

* Paradigma de programacién que permite desarrollar aplicaciones complejas
manteniendo un cédigo mas claro y manejable.

e Incrementa la reutilizacion de codigo.
* Permite realizar asignaciones como lo hariamos en la vida real.
* Permite la colaboracion entre objetos para resolver problemas mas complejos.

* Permite implementar propiedades como herencia o polimorfismo.

G1962 - Programacién Grado en Ingenieria Civil

1. Programacion orientada a Objetos

Moédulo 1
‘ Funcion 1 H Funcion 2 H Funcion 3 ’
Clase 1 Clase 2

] Método 1
Método 1

Método 2
Método 2

Método 3

G1962 - Programacién

Moédulo 2

‘ Funcion 1

‘ Funcion 2 ’

‘ Funcion 3

‘ Funcion 4 ’

‘ Funcion 5 }J

Clase 1

Atributos

Método 1

\ 4
Método 2

Método 3

Grado en Ingenieria Civil

1. Programacion orientada a Objetos

G1962 - Programacién

Creacion de Ia funcion:

def funcion(args):

return vars

Definicion de la clase:
Creacion de instancia
class clase: de la clase:
atributo
def __init__(args): objeto = clase(args)
método(self, args):

Llamada a Ila funcion:

retorno = funcion(args)

Utilizacion del objeto:

objeto.atributo

objeto.método(args)

Grado en Ingenieria Civil

1. Programacion orientada a Objetos

Funciones Objetos

: , Favorecen una mejor organizacion y
Simples y rapidas.

representacion.
Buenas para calculos puntuales. Utiles para problemas complejos.
Representan una estructura clara
Menos estructuradas. de los objetos de problema en la
realidad.
Dificiles de ampliar y dificultan el Faciles de ampliar con mejor
mantenimiento del codigo. mantenimiento del codigo.
Menor coste inicial a la hora de Cédigos mas complejos en estadios
programar. iniciales de la programacion.

G1962 - Programacion Grado en Ingenieria Civil

1.1. Clases

Clase: tipo de dato definido por el desarrollador del cual pueden derivar objetos.

 Estructura:

class NombreClase:
atributos
constructor > def __init_ (self, argumentos)

métodos

* Nomenclatura: comenzando con mayusculas cada
palabra que nombra la clase sin espacios.

G1962 - Programacion

class Coche:
marca="Audi’

def _ init_ (self, matricula, valor):
self.matricula = matricula
self.valor = valor

consulta_matricula(self):
return self.matricula

mi_coche = Coche('1234ABC',18000)
print(mi_coche.marca)

print(mi_coche.consulta_matricula())

Audi
1234ABC

Grado en Ingenieria Civil

1.1. Clases

Clase: tipo de dato definido por el desarrollador del cual pueden derivar objetos.

 Documentacion:

class Coche:
marca="Audi’ : | elass Coche:
def _init_ (self, matricula, valor):
self.matricula = matricula
self.valor = valor

Clase que representa un objeto Coche.

Atributos:

1t tricula(self): . .
consulta_matricula(self) matricula (str): Matricula del coche.

return self.matricula
valor (float): Valor del coche en euros.
mi_coche = Coche('1234ABC',18000)
print(mi_coche.marca)

print(mi_coche.consulta_matricula()) Metodos:

consulta_matricula(): retorna el nimero de matriculaJ

Audi
1234ABC

G1962 - Programacion Grado en Ingenieria Civil

1.2. Objetos

Objeto: instancia o solicitud de una clase que puede ser escalar (divisible) o no escalar.

Tipo Notacion Ejemplo
Entero int 1234
Punto Flotante float 12.34
Complejo complex 1+2;
Booleano bool True/False
Caracter chr ‘A

Tipos Especiales: -inf, inf, None

G1962 - Programacion

type(1234)

int

type(1+2])

complex

type(True)

bool

type('a’)

str

print(chr(65))

0
A

Grado en Ingenieria Civil

1.2. Objetos

Objeto: instancia o solicitud de una clase que puede ser escalar (divisible) o no escalar.

Estructura:

Objeto = Clase(argumentos) class Coche:

marca="Audi’

def _init__ (self, matricula, valor):
self.matricula = matricula
self.valor = valor

* Se pueden crear multiples objetos de una misma
clase sin que los valores de una interfieran en si.

print("Entro en el constructor!™)

def consulta_matricula(self):
return self.matricula

* Al crearlo, el primer método que se invoca de

manera automatica es el constructor. mi_coche = Coche(’12344BC" ,13000)
* Los objetos son conscientes de su propia existencia Entro en el constructor!
(self).

G1962 - Programacion Grado en Ingenieria Civil

1.3. Atributos

Atributo: variables que solo existen dentro del objeto instancia de una clase.

e DinémiCOS: class Coche:
marca="Audi’
* Son creados bajo demanda al crea la instancia sin
necesidad de haber sido especificados en la clase def _init (self, matricula, valor):
previamente. self.matricula = matricula

self.valor = valor
print("Entro en el constructor!™)

* De clase:

consulta_matricula(self):
* Definidos de manera previa en la clase para facilitar return self.matricula
su uso y la coherencia del objeto modelado entre las

diferentes instancias mi_coche = Coche('1234ABC',18000)

mi_coche.propietario = 'Yo'

mi_coche.marca = 'Seat’
print(mi_coche.propietario)
print(mi_coche.marca)

Todos ellos pueden ser accedido y modificados en

cualquier punto de la ejecucion de nuestro codigo. Entro en el constructor!
Yo
Seat

G1962 - Programacion Grado en Ingenieria Civil

1.4. Métodos

Método: funciones que solo existen dentro del objeto

instancia de una clase.

* De clase:

* Definidos de manera estatica pueden ser llamados
directamente desde la clase, pero no seran
conocedores de los atributos de los objetos que se
Instancien.

 De instancia:

* Son conscientes de la existencia del objeto a traves del
primer atributo self y puede hacer uso de atributos y
métodos del mismo.

G1962 - Programacion

class Mensajero:
mensaje = 'No maten al mensajero!’

def _ init_ (self, nombre, destino):
self.nombre = nombre
self.destino = destino
print("Hola soy tu nuevo mensajero y me llamo "+str(self.nombre))

def mensaje_dinamico(self):
return self.destino

def mensaje_estatico():
return "Hola, soy un mensajero muy capaz”

mi_mensajerol = Mensajero('Luis’', 'Madrid"')
print(mi_mensajerol.mensaj i ico())
mi_mensajero2 = Mensaje , 'Burgos’)
print(mi_mensajero2.mensaje_dinamico())

Hola soy tu nuevo mensajerc y me llamo Luis
Madrid
Hola soy tu nuevo mensajero y me llamo Sofia
Burgos

mi_mensajerol.mensaje_estatico()

Traceback (most recent call last)
[75 line 1
i_mensajerol.mensaje_estatico()

~or: Mensajero.mensaje_estatico() takes @ positional arguments but 1 was given

Mensajero.mensaje_estatico()

'Hola, soy un mensajero muy capaz'

Grado en Ingenieria Civil

1.4.

Métodos

Método: funciones que solo existen dentro del objeto instancia de una clase.

« Métodos especiales:

def __init_ (self, argumentos) 2> Constructor

def _ del__ (self, argumentos) = Destructor

def __ str_ (self) 2 representacion de string

def _ len_ (self) 2 retorna longitud del objeto
def __add__(self, objeto) =2 funcién del operador +
def __lt_ (self, objeto) = funcién del operador <

¢

« Métodos privados: utilizan el caracter “_” para
definirlos.

G1962 - Programacion

class Prueba:

def

init__ (self, valor):

self.valor = valor

pr

int("Instancia creada.™)

__str__(self):

return "Probando...”

__len_ (self):

return 1

__add__(self, otro):

return self.valor+otro.valor
__del_ (self):

pr

pruebal =
prueba2 =

Instancia
Instancia

int("No me borres...")

Prueba(1@)
Prueba(2@)

creada.
creada.

print(pruebal+prueba2)
del(pruebal)

30

No me borres...

Grado en Ingenieria Civil

1.5. Herencia y Polimorfismo

Herencia: permite crear clases derivadas que comparten

métodos y atributos.

e Hstructura:

class ClasePadre:

class ClaseHijo(clase_padre):

* Los hijos pueden reescribir los parametros heredados

definiciéon_clase_padre

definicion_clase_hijo

o definir otros nuevos.

* Pueden existir clases abstractas sin implementacion
(pass) que fuercen la redefinicién de métodos.

G1962 - Programacion

class Animal:
def _ init_ (self, especie, edad):
self.especie = especie
self.edad = edad

def hablar(self):
pass

def moverse(self):
pass

def describeme(self):

print("Soy un Animal del tipo", type(self)._ name_)

class Perro(Animal):
def hablar(self):
print(“"Guau!")
def moverse(self):
print(“"Caminando con 4 patas”)

class Abeja(Animal):
def hablar(self):
print(“Bzzzz!")
def moverse(self):
print(“Volando™)
def picar(self):
print(“Picar!™)

mi_perro = Perro('mamiferc’', 1@)
mi_perro.describeme()

Soy un Animal del tipo Perro

Grado en Ingenieria Civil

1.5. Herencia y Polimorfismo

Herencia: permite crear clases derivadas que comparten métodos y atributos.

 Redefinicion de constructores:

class ClasePadre: class ClaseHijo(ClasePadre):
def __init_ (self, p_1,p_2, ..., p_N): def __init_ (self, p_1, p_2, ..., p_N, p_N1):
selfp 1=p_1 super().__init_ (p_1, p_2, ..., p_N)
self.p. 2=p_2 self.p_ N1 =p_N1
self.p N=p_N

G1962 - Programacién Grado en Ingenieria Civil

1.5. Herencia y Polimorfismo

Polimorfismo: permite a diferentes objetos ser accedidos utilizando el mismo interfaz.

* Propiedad que es derivada de la herencia que class Animal:
permite acceder a objetos de diferente clase e R
siempre que la clase padre (interfaz) sea ’

compartida. e e T T
def hablar(self):

print("Guau!™)
* La definicién de una clase abstracta garantiza la

existencia de los métodos polimoérficos en todas las class Gato(Animal):
clases que lo heredan. def hablar(self):

print("Miau!")

« Simplifican los procesos de llamada ya que las for aninal in Perro(), Gato():
. , _ nisal in per
implementaciones particulares dependen de forma L B,
automatica de la clase del objeto. Guau!

Miau!

G1962 - Programacion Grado en Ingenieria Civil

Creacion de la funcion:
Llamada a la funcién:

def funcion(args):

retorno = funcion(args)

1.6. Ejemplo (Funcion)

Definicion de la clase:

Creacion de instancia Ltiascionlaelob/eto;

class c]ase: de la clase: objeto.atributo
atributo

def __init__(args): objeto = clase(args) . .
método(self, args): objeto.método(args)

def vel MRUA(a, t, vO):

Argumentos: a aceleracion m/s2
t instante temporal s retorno = vel MRUA(3,10,0)

v@ velocidad incial m/s print("Velocidad final: ",retorno,

Ret a: locidad final vf
'?lorna verochas e Velocidad final: 30 m/s

vf = vO + (a * t)
return vf

G1962 - Programacion Grado en Ingenieria Civil

Creacion de la funcion:
Llamada a la funcién:
def funcion(args):

1.6. Ejemplo (Clase)

Definicion de la clase:

retorno = funcion(args)

Creacion de instancia Ltiascionlaelob/eto;

class clase: de la clase:
atributo
def __init__(args): objeto = clase(args)
método(self, args):

objeto.atributo

objeto.método(args)

class Coche:
vl = ©
def __init_ (self, a):
self.a = a

def vel MRUA(self, t):

return self.v@ + (self.a * t)
def _ str_ (self):

return "No pienso pintar nada!"

print("Velocidad final: ",c.vel MRUA(10),' m/s"')
print(c)
c.vl = 15

print("Velocidad inicial: ", c.v@, 'm/s')

Velocidad final: 30 m/s
No pienso pintar nada!
Velocidad inicial: 15 m/s

= Coche(3)
= Coche(5)
print(type(c))

print(type(c2))

<class ' _main__.Coche'>
<class '__main__.Coche'>

G1962 - Programacion Grado en Ingenieria Civil

1.6. Ejemplo (Contraste)

class Losa:
area_losa(largo, ancho): def __init_ (self, largo, ancho, espesor=0.2, material="Hormigén"):
return largo * ancho self.largo = largo
self.ancho = ancho
perimetro_losa(largo, ancho): self.espesor = espesor
return 2 * (largo + ancho) self.material = material

largo area(self):

ancho return self.largo * self.ancho

perimetro(self):
espesor = 0.2

. L return 2 * (self.largo + self.ancho)
material = "Hormigon"

mi_losa = Losa(largo=5, ancho=3, espesor=0.25, material="Hormigon armado")

print("Area:", area_losa(largo, ancho), "m2")

print("Perimetro:", perimetro_losa(largo, ancho), "m")

print("Area:", mi_losa.area(), "m2")

print("Espesor:”, espesor, "m" print("Perimetro:", mi_losa.perimetro(), "m")
print("Material:", material) print("Espesor:", mi_losa.espesor, "m"

; rint("Material:", mi_losa.material
Area: 15 m? P (>)

Perimetro: 16 m Area: 15 m?
Espesor: 0.2 m Perimetro: 16 m
Material: Hormigon Espesor: 0.25 m

Material: Hormigon armado

G1962 - Programacion Grado en Ingenieria Civil

