function() ¢

Programacion

TEMA 7. EXCEPCIONES, VALIDACION Y DEPURACION

()-

open
course
ware

Javier Gonzalez Villa

David Lazaro Urrutia

DEPARTAMENTO DE MATEMATICA APLICA '
Y CIENCIAS DE LA COMPUTACION

Este material se publica bajo la siguiente lic
Creative Commons BY-NC-SA 4.0

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.es_ES

Contenidos

1. Fuentes de error

2. Validacion

1. Tipos de pruebas

2. Enfoques de validacion

3. Depuracion de codigo

1. Enfoques de depuracion

4. Excepciones y afirmaciones

G1962 - Programacién Grado en Ingenieria Civil

1. Fuentes de error

* Principalmente en programacion existen tres fuentes fundamentales de error, las
cuales pueden ser abordadas desde diferentes enfoques, pero siempre requieren de
una estructura ordenada de actuacion que garantice la calidad del cédigo

desarrollado.

Modularidad Validacion
G1962 - Programacién Grado en Ingenieria Civil

*/

Documentacion Depuracion

1. Fuentes de error

Modularidad
Documentacion

G1962 - Programacién

Los fallos de estructura suceden al no plantear de
manera inicial como se va a desarrollar el programa y
como se llevara a cabo la implementacion.

Suelen producirse cuando se comienza a programar
antes de pensar y estructurar el trabajo de manera que
se va produciendo codigo sobre la marcha.

Para resolver esto es necesario seguir un paradigma de
Modularidad, es decir fragmentar nuestro céodigo en
porciones mas pequenas como funciones, las cuales son
mas asequibles de programar y validar.

Por otro lado, es muy recomendable documentar en todo
momento lo que se desarrolla de cara a futuros cambios.

Grado en Ingenieria Civil

1. Fuentes de error

 Tras implementar nuestro codigo de manera correcta
(sin fallos de ejecucion) y probar nuestro cédigo nos
damos cuenta de que no provee de los resultados
esperados.

* Cuando queremos ver s1 nuestro codigo es capaz de
proveer de resultados correctos para un posible abanico
de entradas de datos.

* Se puede utilizar técnicas de validacion para comprobar
el correcto funcionamiento de nuestro programa en
diferentes escenarios.

Validacion
Depuracion

* Se puede utilizar técnicas de depuraciéon en caso de no
encontrar la fuente del error.

G1962 - Programacién Grado en Ingenieria Civil

1. Fuentes de error

Excepciones

G1962 - Programacién

Bajo ciertas condiciones un programa que funciona
correctamente puede producir errores conocidos.

En este caso dependiendo del tratamiento que se le
quiera dar a dichos errores se pueden tener diferentes
técnicas de solucion.

Una de las mas comunes es el manejo de excepciones
con las cuales podemos garantizar que nuestro codigo
funcione bajo condiciones de excepcion.

También se pueden implementar técnicas de control de
datos de entrada (para prevenir errores) o de retorno
(para evitar propagacion de errores).

Grado en Ingenieria Civil

1. Fuentes de error

* Algunas de los errores mas comunes o excepciones que se pueden encontrar son los
siguientes:

* T'ypeError: operaciones o funcién a tipos inapropiados.

o ZeroDivisionError: divisién entre cero.

o OverflowError: nimeros demasiado grandes.

* IndexError: acceso a un valor de una secuencia que no existe.

* KeyError: acceso a una clave de diccionario que no existe.

« [ileNotFoundError: intento de abrir fichero que no existe.

o ImportError: fallo en la importacion de un médulo.

 NameError: acceso a una variable no declarada.

« SyntaxError: fallos en la escritura del codigo (paréntesis, comas, corchetes, etc.)

* Aunque los errores mas dificiles de solucionar son los que no son mostrados por el
intérprete de Python.

G1962 - Programacién Grado en Ingenieria Civil

1. Fuentes de error

» Kl flujo de excepciones o errores:

»
— 4 Lanzamiento de excepcion
I ;
I
I]
] L
< Y

I
[F—— Parada de la ejecucion

I

¢Manejador?

I
S— No Si
I
I
I
I

_— Propagacion Ejecucion manejador

G1962 - Programacién Grado en Ingenieria Civil

2. Validacion

* Proceso necesario tras la implementacion de un cédigo para comprobar que el
funcionamiento del mismo es correcto.

* Trata de validar o intentar abarcar todos los escenarios en los que se va a encontrar
nuestras implementaciones para evitar posibles fallos inesperados.

* En ciertas ocasiones es necesario seguir un proceso mas estricto de validacion para
cumplir con estandares particulares de seguridad o de fiabilidad.

 Permite reducir la carga de trabajo y los costes al automatizar y garantizar la calidad
de las implementaciones.

G1962 - Programacién Grado en Ingenieria Civil

2.1. Tipos de pruebas

* Pruebas unitarias: validan cada componente o funcion desarrollada en nuestro coédigo
de manera individual a través de diversos enfoques.

* Pruebas de regresion: tras identificar un nuevo error, validan de nuevo de manera
unitaria todo nuestro codigo anadiendo el nuevo error identificado.

* Pruebas funcionales: verifican las funcionalidades particulares que quiere
proporcionar nuestro coédigo independientemente del nimero de médulos o funciones
que 1nvolucre y validando solo el resultado obtenido.

* Pruebas de integracion: comprueba el correcto funcionamiento del programa de
manera conjunta, estudiando las interacciones entre moédulos y funciones para que
todo el sistema esté en armonia.

* Pruebas de humo, de aceptacion, de rendimiento, punta a punta, ...

G1962 - Programacién Grado en Ingenieria Civil

2.2. Enfoques de validacion

Pruebas aleatorias: genera valores de prueba aleatorios con los cuales comprobar si

nuestro codigo funciona correctamente.

 Se utilizan si1 nuestros resultados no
tlenen unos limites claramente
establecidos. = 2 Argumento aleatorio 1 Argumento aleatorio N

A mayor nimero de pruebas mayor
probabilidad de que nuestro codigo esté

correcto. Funcion(A1, ..., AN)

return

* Se puede hacer uso de librerias de
generacion de numero aleatorios como
random en Python.

No

G1962 - Programacién Grado en Ingenieria Civil

2.2. Enfoques de validacion

Caja negra: prueba el codigo asumiendo no conocer su implementacion y poniendo a prueba

los limites de las funcionalidades esperadas.

* No se conoce la implementacion.

* Puede realizarlas alguien ajeno a la
persona que creo el codigo (menos
sSesgo).

* Pueden ser reutilizadas para
posteriores pruebas.

* Considera valores normales, anomalos
v limite a la hora de llevar a cabo las
pruebas.

G1962 - Programacién

Math.log()
Condicion Valor de prueba Resultado
Negativo -10 ValueError
Positivo 10 2.3025
Cero 0 ValueError
Maximo 1.7976931348623157e+308 709.7827
Minimo -1.7976931348623157e+308 ValueError
Limite 1.7976931348623157e+310 inf

Grado en Ingenieria Civil

2.2. Enfoques de validacion

Caja blanca: parte de la premisa de conocer codigo completamente e ir probando linea a

linea todo el codigo, recorriendo cada bifurcacion dentro del flujo de ejecucion.

* Se requiere conocer explicitamente el
codigo a validar.

* Las entradas de prueba son disenadas para

recorrer cada iteracién y ramificaciéon del def exponencial(x,n):
CédlgO. return sum([(x**1i)/math.factorial(i) for i in range(n)])
, . , - try:
* Es mas tediosa pero mas exhaustiva ya "« - exponencial(1, 1.0)
gue recorre practlcamente todas las lineas print("Pruebas finalizadas correctamente.")
e nuestro codigo. ==

print("Error encontrado para valores decimales.")

° ES d1f1011mente I‘eutﬂlzable entre Error encontrado para valores decimales.
diferentes implementaciones y puede no
contemplar casos limite.

G1962 - Programacion Grado en Ingenieria Civil

2.2. Enfoques de validacion

import math
import random

exponencial(x,n):
return sum([(x**i)/math.factorial(i) for i in range(n)])

i=0

:rro:::False def exponencial(x,

while (i < 10000): return sum([(x**i)/math.factorial(i) for i in range(n)])
minimo = -1.7976931348623157e+308
maximo = 1.7976931348623157e+308
range = maximo - minimo
x = (random.random()*rango)-minimo
try:

try:
e = exponencial(l, 1.0)
print("Pruebas finalizadas correctamente.")

e = exponencial(x,100) except:

except: print("Error encontrado para valores decimales.")
error = True
print(“Error encontrado para el valor
break

finally:
i=1i+1

if not error:

»X) Error encontrado para valores decimales.

"

print("Pruebas finalizadas correctamente.")

Pruebas finalizadas correctamente.

G1962 - Programacion Grado en Ingenieria Civil

3. Depuracion de cédigo

* S1 mediante el proceso de validaciéon hemos encontrado un error que no sabemos
resolver de manera inmediata, es momento de depurar el cédigo.

» Este proceso trata de recorrer el codigo de manera metodica y ordenada hasta
encontrar el error.

* S1 hemos seguido un paradigma de modularidad, sera mas facil encontrar el error ya
que estara acotado dentro de una funcién o maédulo.

* Dependiendo del error obtenido, puede requerir retomar una vision global de los datos
de entrada y salida esperados asi como el flujo de ejecucion del codigo.

G1962 - Programacién Grado en Ingenieria Civil

3.1. Enfoques de depuracion

« Kstudio del flujo del codigo: entender como se comporta la ejecucion de nuestro coédigo
a través de diagramas. Es necesario para acotar donde se produce el error.

« Utilizar la sentencia print: Una vez se tiene una idea de donde puede estar localizado
el error, utilizar sentencias que pinten el estado de las variables, puede ser una buena
1dea para conocer de donde proviene el error.

o Utilizar el Debugger: En caso de estar completamente perdidos y requerir de una
ejecucion global, se puede hacer uso del Debugger de JupyterlLab para ir paso a paso
ejecutando nuestro codigo y encontrar el error.

G1962 - Programacién Grado en Ingenieria Civil

3.1. Enfoques de depuracion

« Utilizar el Debugger y los puntos de interrupcion

A Untitled.ipynb

B + X

[*1:

G1962 - Programacion

Python 3 (ipykernel) @

woN R o

4
5
6
7
8
9

UNTITLED.IPYNB
VARIABLES Locals - [l =
> special variables:

> function variables:

CALLSTACK »

C:\Users\gvillaj\AppData
<module> \Local\Temp\ipykernel_17112
\4266978711.py:2

BREAKPOINTS 1l

® ..\ipykernel_17
@ ..\ipykernel_17112\4266978711.py 2
@ ..\ipykernel_17112\4266978711.py 3

@ ..\ipykernel_17112\4266978711.py 4

SOUF ﬁ C:\Users\gvillaj\AppData'\Local\Temj

i=9
while (i < 100):
print(i)

L]
.
.
. i=3i+1

Grado en Ingenieria Civil

4. Excepciones y afirmaciones

* Se producen cuando nuestro codigo correctamente implementado se encuentra con
una condicion no esperada en su ejecucion.

 Se tendrian los errores antes comentados u otros similares.

* Se pueden tener dos enfoques a la hora de prevenir estas condiciones no deseadas:

1. Programacion defensiva (afirmaciones): comprobar cada parametro y retorno de cada
funcion o método para que no se desvie de lo esperado (tipo, limites, niimero de datos, ...).

2. Manejo de excepciones (excepciones): sin necesidad de comprobar los datos, una vez que se
produce el error nuestro cédigo esta preparado para identificarlo y tratarlo.

G1962 - Programacién Grado en Ingenieria Civil

4. Excepciones y afirmaciones

1. Programacién defensiva (afirmaciones)

assert condicion, “mensaje de error”

2. Manejo de excepciones (excepciones):

G1962 - Programacién

try:

bloque de cédigo donde se produce un error
except ErrorParticular:

actuacion frente al ErrorParticular
except:

actuacion frente a cualquier otro error
finally:

bloque que siempre se ejecutara

Grado en Ingenieria Civil

4. Excepciones y afirmaciones

1. Programacion defensiva (afirmaciones)

assert condicidon, “mensaje de error”

2. Manejo de excepciones (excepciones):
o Sustituir el valor erroneo por otro valido (no recomendable).
 Retornar un mensaje de error por pantalla.

* Parar la ejecucion y relanzar la excepcion para que la trate otra funcion.

raise Excepcion(“mensaje de error”)

G1962 - Programacién Grado en Ingenieria Civil

4. Excepciones y afirmaciones

import math

def exponencial(x,n)
import math assert (type(x) float) or (type(x) == int), "Tipo de x incorrecto.”
assert (type(n) int), "Tipo de n incorrecto.”

def exponencial(x,n): assert n > @, "El valor de n debe ser positivo.”

try:
g return sum([(x**i)/math.factorial(i) for i in range(n)]) & = sum([(x**1)/math.factorial(i) for i in range(n)])
except ValueError: assert (type(e) == float) or (type(e) == int), "Tipo de resultado incorrecto.”
print("Error en los valores introducidos.™) assert e > @, "Valor del resultado incorrecto.’
return sum([(x**i)/math.factorial(i) for i in range(1@@)])
except TypeError: return e
print(“"Error en los tipos introducidos.™)
return sum([(x**i)/math.factorial(i) for i in range(1@@)])
except:
print("Vuelvo a lanzar la excepcidn.™) 2.7182818284598455

raise ValueException("Error desconocido.™)
finally: AssertionError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel 9928\4241624326.py in
14
- - 15 print(exponencial(1,100))
print(exponencial(1,1060)) ---> 16 2rint(ex§onencial('hola'.100)}
print(exponencial(l, 'hola")) 17 print(exponencial(1,100))

print(exponencial(1,10@))
print(exponencial('hola’,100))

print(“Siempre se ejecuta!")

Siempre se ejecuta! ~\AppData\Local\Temp\ipykernel 9928\4241624326.py in (%, n)
2.7182818284598455

Error en los tipos intreoducidos. 3 def exponencial(x,n)

assert (type(x) == float) or (type(x) == int), "Tipo de x incorrecto.”
assert (type(n) == int), "Tipo de n incorrecto.”

assert n > 0, "El valor de n debe ser positivo."

Siempre se ejecuta!
2.7182818234590455

AssertionError: Tipo de x incorrecto.

G1962 - Programacion Grado en Ingenieria Civil

