open
course
ware

Programacion

TEMA 9. ALGORITMICA Y COMPLEJIDAD

function() ¢

()-

Javier Gonzalez Villa

David Lazaro Urrutia

DEPARTAMENTO DE MATEMATICA APLICA '
Y CIENCIAS DE LA COMPUTACION

Este material se publica bajo la siguiente lic
Creative Commons BY-NC-SA 4.0



http://creativecommons.org/licenses/by-nc-sa/4.0/deed.es_ES

Contenidos

1. Eficiencia

1. Meétodos de medicion

2. Clases de complejidad
Constante 0 (k)
Lineal 0(n)
Polinomial 0(n*)
Logaritmica O(logn)
Exponencial 0(k™)

I

3. Conclusiones

G1962 - Programacién Grado en Ingenieria Civil



1. Eficiencia

« ;Como podemos saber cuanto tiempo tardara en ejecutarse un algoritmo en
particular?

* Coémo saber el impacto de la implementacion en el coste computacional?

» ;Como podemos medir el impacto del equipo donde se esta ejecutando nuestro codigo
en el tiempo requerido?

* ;Qué aspectos he de tener en cuenta a la hora de realizar implementaciones en
términos de coste computacional en espacio y tiempo?

* Dadas las capacidades actuales de los equipos de computo, /es realmente necesario
tener en cuenta la eficiencia de nuestros algoritmos?

G1962 - Programacion Grado en Ingenieria Civil



1. Eficiencia

Simulacion de evacuacion masiva de personas en infraestructuras grandes.

Analisis hidrodinamico de inundaciones urbanas a escala de ciudad.

Optimizacién de trayectorias y horarios en redes ferroviarias extensas.

Calculo térmico transitorio de tuneles largos o presas bajo escenarios extremos.

Evaluacion del impacto ambiental y estructural de grandes obras lineales, como
carreteras o tuneles.

G1962 - Programacion Grado en Ingenieria Civil



1. Eficiencia

* La eficiencia trata de medir como de 6ptimo es un algoritmo, una implementacién o la
arquitectura de un ordenador.

* Existen diversas formas de medir la eficiencia dependiendo del proposito.

 En términos de eficiencia no solo es necesario entender el tiempo requerido para la
ejecucion de un determinado c6digo en una maquina concreta sino también para
entender el espacio de almacenamiento que este requiere.

« Existen principalmente tres formas de medir la eficiencia:
* Tiempos de ejecucion: orientada a analisis del rendimiento de diferentes ordenadores.

* Conteo de operaciones: orientada a optimizar las implementaciones.

* Orden de crecimiento: orientada a puramente la eficiencia de los algoritmos implementados.

G1962 - Programacién Grado en Ingenieria Civil



1.1. Métodos de medicion

Tiempo: medicion del tiempo de ejecucion requerido por el algoritmo en su peor ejecucion.

* Varia entre algoritmos. [35]: | import time
import itertools
t1 = time.time()
* Varia entre implementaciones. L=
for i in range(100000000):
* Varia entre diferentes ordenadores. A
* Se requieren multiples entradas para observar la €2 = tine.tine()
tendencia de los tiempos de ejecucion. for v in itertools.repeat(5,100000000):
suma = suma + 5
* No se puede recoger de manera precisa los £3 = time.time()
tiempos requeridos de ejecucion en funcion de las

) print("Tiempo usando listas: ",t2-t1)
entl‘adas del algOl‘ltmO print("Tiempo usando itertools: ",t3-t2)

Tiempo usando listas: 8.695796966552734
Tiempo usando itertools: 3.9877750873565674

G1962 - Programacion Grado en Ingenieria Civil



1.1. Métodos de medicion

Operaciones: conteo de las operaciones realizadas por el algoritmo en su peor ejecucion.

* Varia entre algoritmos.
* Varia entre implementaciones.
* No depende del ordenador donde se ejecute.

* No se define muy claramente qué operaciones
requieren un coste tal que deben ser contadas.

* Se puede recoger de manera precisa el numero de

instrucciones ejecutadas en funcion de las
entradas del algoritmo.

G1962 - Programacion

def sort(L):

L2 = []

lenObj = len(L)

while len(L2) != lenObj:
minV = float('inf"')
for v in L:

if (v < minV):
minV = v

L2.append(minV)
L.remove(minV)

return L2

sort([6,7,1,2,9,7,3,0,21,5,3])

(e, 1, 2, 3, 3, 5,6, 7, 7, 9, 21]

Grado en Ingenieria Civil



1.1. Métodos de medicion

Ordenes: estudio del codigo obviando el conteo de ordenes individuales y centrandose en la

ejecucion de grandes conjuntos de instrucciones para el peor caso del algoritmo.

 Necesitamos considerar las entradas de nuestro
algoritmo para obtener su coste.

* Generalmente al igual que con el conteo de
operaciones tenderemos a considerar el caso peor
de entre los posibles.

* Queremos obviar las operaciones triviales y
centrarnos en el cuello de botella de nuestros

algoritmos.

* Queremos eliminar todas las variables que no
sean puramente algoritmicas.

G1962 - Programacion

def search(L, v):
i=20
for e in L:
if v == e:
return True, i
i+=1

return False, i

L = range(1000)
print(search(L, 1@))
print(search(L, 128))
print(search(L, 1088))

(True, 18)
(True, 1€0)
(False, 1009)

Grado en Ingenieria Civil



1.1. Métodos de medicion

Ordenes: estudio del codigo obviando el conteo de ordenes individuales y centrandose en la

ejecucion de grandes conjuntos de instrucciones para el peor caso del algoritmo.

* Operaciones (search): 1 +3n +1

def search(L, v):
* Orden de crecimiento (search): O(n) ES
or € 1n .
if v == e:
return True, i

i+=1

Operaciones 0() returs False, 3
2 + 511 + n2 O(Ilz) L = range(l@ee)
print(search(L, 1@))
on 4 31’110 O(Zn) print(search(L, 188))
print(search(L, 1088))
7+ n3+ 1000n Om?) (True, 10)

(True, 1€0)
(False, 1009)

G1962 - Programacion Grado en Ingenieria Civil



1.1. Métodos de medicion

Ordenes: estudio del codigo obviando el conteo de ordenes individuales y centrandose en la

ejecucion de grandes conjuntos de instrucciones para el peor caso del algoritmo.

e Sumatorio de ordenes:

Om) +O(n) =0(n +n)=0(2n) =0(n)

* Multiplicacion de ordenes (anidacion):

G1962 - Programacion

OMm) * O(n) =0(m * n) = 0(n?

def sort(L):

12 = []

lenObi = len(l)

while len(L2) != lenObj:
minV = float('inf"')
for v in L:

if (v < minV):
minV = v

L2.append(minV)
L.remove(minV)

return L2

sort([6,7,1,2,9,7,3,0,21,5,3])

(e, 1, 2, 3, 3, 5,6, 7, 7, 9, 21]

Grado en Ingenieria Civil



1.1. Métodos de medicion

Ordenes: estudio del codigo obviando el conteo de ordenes individuales y centrandose en la

ejecucion de grandes conjuntos de instrucciones para el peor caso del algoritmo.

* Varia entre algoritmos.

* No varia entre implementaciones sino entre
algoritmos.

* No depende del ordenador donde se ejecute.

* Obvia las instrucciones triviales centrandose
solamente en los bloques que requieren gran carga
computacional.

* Se puede recoger de manera precisa el numero de

Iinstrucciones ejecutadas en funcion de las
entradas del algoritmo.

G1962 - Programacion

def sort(L):
=[]
lenObi = len(l)
while len(L2) != lenObj:
minV = float('inf"')
for v in L:
if (v < minV):
minV =
L2.append(minV)

L.remove(minV)

return L.Z
sort([6,7,1,2,9,7,3,0,21,5,3])

(e, 1, 2, 3, 3, 5,6, 7, 7, 9, 21]

Grado en Ingenieria Civil



2. Clases de complejidad
* Describen el orden de crecimiento del algoritmo en funcién de las entradas del mismo
obviando las instrucciones de bajo coste computacional.

* Permiten estudiar la escalabilidad de nuestros algoritmos mediante la clasificacion
directa en una clase concreta, permitiendo extrapolarlo a los tiempos de ejecucion.

* Permite evaluar cuando un algoritmo puede utilizarse y cuando los limites
computacionales haran imposible su uso.

» Para clasificar un algoritmo generalmente se utiliza el algoritmo con su peor entrada,
es decir por ejemplo en el caso de buisquedas en listas que el elementos buscado este
en la ultima posicidon, haciendo necesario recorrer toda la lista.

G1962 - Programacién Grado en Ingenieria Civil



2. Clases de complejidad

G1962 - Programacion

400000

300000

200000

100000

Grado en Ingenieria Civil



2. Clases de complejidad

Clase n=1 n=10 n=100 n=1000
0 (k) 2 2 2 2
0(n) 1 10 100 1.000
0(n") 1 100 10.000 1.000.000
O(logn) 0 1 2 3
O(nlogn) 0 10 200 3000
0(k™) 2 1024 " OL496.703.205576

k constante de ejemplo igual a 2 y n tamano de la entrada del algoritmo

G1962 - Programacién Grado en Ingenieria Civil



2.1. Constante 0(k)

Constante: la complejidad del algoritmo es independiente del tamano de las entradas.

 Pueden contener estructuras iterativas o

recursivas siempre y cuando estas no dependan def k_x 10(k):
directamente del tamano de la entrada del cuma = O
algoritmo. for i in range(10):
; ; : . suma = suma + k
« La mayoria de algoritmos o funciones sencillas return k

suelen tener esta complejidad.

k x 10(10)

* A pesar de poder tener constantes k diversas,
todas se agrupan como de igual coste 10
computacional y complejidad.

G1962 - Programacion Grado en Ingenieria Civil



2.2. Lineal O(n)

Lineal: la complejidad depende directamente del tamarno de la entrada del algoritmo.

* Generalmente son algoritmos sencillos que

' : def h(e,L):
simplemente recorren mediante elementos ef search(e,l)

i=-1

lterativos y recursivos una lista con una longitud while i < len(L)-1:
determinada. L - i+ 1
. » if e == L[1]:
* Algunos algoritmos con esta complejidad son por v £
ejemplo busquedas en listas, calculo de
sumatorios u otra aplicaciéon matematica a todos search(4, [1,3,4,1,8,5,7,9])

los elementos de una lista.

G1962 - Programacion Grado en Ingenieria Civil



2.3. Polinomial 0(n*)

Polinomial: la complejidad depende generalmente del niumero de bucles anidados

dependientes de las variables de entrada del algoritmo.

* Dentro de esta familia de algoritmos, los mas
comunes son los de orden cuadratico O(n*) ya que
es muy comun el uso de dos bucles anidados.

* Pueden darse complejidades polinémicas de mayor
orden, pero generalmente viene asociadas a una
mala producciéon de codigo.

* Es un tipo de complejidad que si alcanza un alto

orden de magnitud ha de ser controlada para que
sea viable su ejecucion en tiempos razonables.

G1962 - Programacion

def sort(L):

12 = []

lenObj = len(L)

while len(L2) != lenObj:
minV = float('inf"')
for v in L:

if (v < minV):
minV = v

L2.append(minV)
L.remove(minV)

return L2

sort([6,7,1,2,9,7,3,0,21,5,3])

(e, 1, 2, 3, 3, 5,6, 7, 7, 9, 21]

Grado en Ingenieria Civil



2.4. Logaritmica O(logn)

Logaritmica: esta complejidad crece de manera logaritmica requiriendo menos tiempo que

la complejidad polinémica.

° Muchos de ].OS alg‘orltmos [1]: def busqueda_binaria_recursiva(a,L,menor,mayor):
optimizados para busquedas y print(Ejecucion )
. » . . 1k mayor >= menor:
ordenacion de listas tienen una mitad = (mayor + menor) // 2
complejidad logaritmica. if Limitad] == a:
return mitad
. . elif L[mitad] > a:
® A]_gunos eJemp]_OS de algorltmos return busqueda_binaria_recursiva(a,L,menor, mitad-1)
con complejidad logaritmica son elses o _ _
5 , . . return busqueda_binaria_recursiva(a,L,mitad+1,mayor)
por ejemplo la busqueda binaria o o
la bisqueda por biseccion. i
. . . lista = [6,7,13,17,87,121,123,255
® LOS algOI‘ltmOS que lmpllquel’l ]-a print("El valor 13 esta en la posicidn: "+str(busqueda_binaria recursiva(13,lista,®,7)))
aplicacion de técnicas de divide y Ejecucisn!
venceras suelen tener este tipo de Ejecucisn!

Complejldad. Ejecucidn!

El valor 13 esta en la posicidn: 2

G1962 - Programacion Grado en Ingenieria Civil



2.4. Logaritmica O(logn)

Logaritmica: esta complejidad crece de manera logaritmica requiriendo menos tiempo que

la complejidad polinémica.

Ejecucién 1

Ejecucion 2

Ejecucion 3

G1962 - Programacién

121 123 255

17

17

Tamano de lista = 8
Complejidad: O(log n)
10g28 =3

Grado en Ingenieria Civil



2.5. Exponencial O(k™)

Exponencial: complejidad generalmente no abordable ya que el coste computacional es

demasiado alto.

#2.4

« Algunas funciones recursivas o iterativas Ay B B s
generalmente que implican combinatoria, pueden Argumentos: n ninero de discos a Sugar.

.o . Origen cadena que identifique la torre origen.
d 1 1 d d d d 1 Auxiliar cadena que idenfifique la torre auxiliar.
a’r ugar a Comp eJ]' a eS e Or en eXponen(:la ° Destino cadena que ident que la torre destino.
Pinta por pantalla la secuencia de movimientos necesaria para resolver el juego.

« Costes computacionales tan altos pueden dar " print{Huve disco de 1a torve *, onigen, * 3 1a torre *, Destine)
lugar a la imposibilidad de resolver el problema e T B e et

mediante ese algoritmo. r.et“::noi(n-l_, Auxiliar, Origen, Destino)

Hanoi(3, 'Origen', 'Auxiliar', 'Destino')

Mueve disco de la torre Origen a la torre Destino

* Se suelen usar algoritmos de aproximacion o
probabilistas en lugar de algoritmos deterministas e nviel -+ ekl

Mueve disco de la torre Origen a la torre Destino

de tan a]_to Coste. Mueve disco de la torre Auxiliar a la torre Origen

Mueve disco de la torre Auxiliar a la torre Destino

Mueve disco de la torre Origen a la torre Destino

G1962 - Programacion Grado en Ingenieria Civil



2.5. Exponencial O(k™)

Exponencial: complejidad generalmente no abordable ya que el coste computacional es

demasiado alto.

0]: def fibonacci(n): def fibonacci_iterativo(n):

print("Ejecucidn!™)

. - a, b=29,1
S i n.-;tu.:n o for _ in range(n):
 Permutaciones completas. elif n - 1: print(“Ejecucién!®)
return 1 a, o = b, a+b
else:
© °© © © return fibonacci(n-1) + fibonacci(n-2 return a
« Algoritmos recursivos como Fibonacci. reneeTy e
print(fibonacci(2)) print(fibonacci_iterativo(2))
Ejecucidn! . P
Fn) = Fn-1) + Fn—-2) =" c3ecuciont
1 1
* (Generacion de subconjuntos.
[11]: def generar_subconjuntos(lista):
subconjuntos =
 Algunos algoritmos de fuerza bruta que exploran o et e
todas las posibles combinaciones. for subconjunto in subconjuntos:

nuevos_subconjuntos.append(subconjunto + [elemento])
subconjuntos += nuevos_subconjuntos
return subconjuntos

generar_subconjuntos([1,2,3])

(111: [[1, [11, [2], [, 2], [31, [1, 31, [2, 3], [1, 2, 3]]

G1962 - Programacion Grado en Ingenieria Civil



2. Clases de complejidad — Operaciones comunes

Clase Listas Tuplas Cadenas Diccionarios Conjuntos
Afadir o(1) o(1) o(1)
Longitud o(1) o(1) o(1) o(1) O(1)
Comparar O(n) O(n) O(n) O(n) O(n)
Eliminar O(n) 0(1) 0(1)
Copiar O(n) O(n) O(n) O(n) O(n)
Buscar O(n) O(n) O(n) 0(1) 0(1)

Algunas estructuras estan optimizadas por la unicidad de sus elementos
mediante funciones [lamadas Hash

G1962 - Programacién Grado en Ingenieria Civil



3. Conclusiones

» La eficiencia mide qué tan 6ptimo es un algoritmo o implementacion, considerando
tanto el tiempo de ejecucion como el espacio de almacenamiento.

« Existen tres métodos principales para medir eficiencia: tiempos de ejecucion practicos,
conteo de operaciones algoritmicas y estudio de ordenes de crecimiento.

« Kl analisis se centra habitualmente en el peor caso para garantizar que el algoritmo
funcionara razonablemente en todas las circunstancias.

* Las clases de complejidad (constante, lineal, polinomial, logaritmica y exponencial)
permiten comparar la escalabilidad de algoritmos y decidir su aplicabilidad segun el
tamano de entrada.

 Un buen analisis de eficiencia ayuda a elegir y disenar algoritmos que sean practicos
y viables para problemas reales.

G1962 - Programacion Grado en Ingenieria Civil



