
TEMA 9. ALGORÍTMICA Y COMPLEJIDAD

Programación

Javier González Villa
David Lázaro Urrutia

DEPARTAMENTO DE MATEMÁTICA APLICADA
Y CIENCIAS DE LA COMPUTACIÓN

Este material se publica bajo la siguiente licencia:
Creative Commons BY-NC-SA 4.0

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.es_ES

Contenidos

1. Eficiencia
1. Métodos de medición

2. Clases de complejidad
1. Constante !(#)
2. Lineal !(%)
3. Polinomial !(%&)
4. Logarítmica ! log %
5. Exponencial !(#*)

3. Conclusiones

G1962 - Programación Grado en Ingeniería Civil

1. Eficiencia

G1962 - Programación Grado en Ingeniería Civil

• ¿Cómo podemos saber cuanto tiempo tardará en ejecutarse un algoritmo en
particular?

• ¿Cómo saber el impacto de la implementación en el coste computacional?

• ¿Cómo podemos medir el impacto del equipo donde se esta ejecutando nuestro código
en el tiempo requerido?

• ¿Qué aspectos he de tener en cuenta a la hora de realizar implementaciones en
términos de coste computacional en espacio y tiempo?

• Dadas las capacidades actuales de los equipos de computo, ¿es realmente necesario
tener en cuenta la eficiencia de nuestros algoritmos?

1. Eficiencia

G1962 - Programación Grado en Ingeniería Civil

• Simulación de evacuación masiva de personas en infraestructuras grandes.

• Análisis hidrodinámico de inundaciones urbanas a escala de ciudad.

• Optimización de trayectorias y horarios en redes ferroviarias extensas.

• Cálculo térmico transitorio de túneles largos o presas bajo escenarios extremos.

• Evaluación del impacto ambiental y estructural de grandes obras lineales, como
carreteras o túneles.

1. Eficiencia

G1962 - Programación Grado en Ingeniería Civil

• La eficiencia trata de medir como de óptimo es un algoritmo, una implementación o la
arquitectura de un ordenador.

• Existen diversas formas de medir la eficiencia dependiendo del propósito.

• En términos de eficiencia no solo es necesario entender el tiempo requerido para la
ejecución de un determinado código en una máquina concreta sino también para
entender el espacio de almacenamiento que este requiere.

• Existen principalmente tres formas de medir la eficiencia:
• Tiempos de ejecución: orientada a análisis del rendimiento de diferentes ordenadores.
• Conteo de operaciones: orientada a optimizar las implementaciones.
• Orden de crecimiento: orientada a puramente la eficiencia de los algoritmos implementados.

1.1. Métodos de medición

G1962 - Programación Grado en Ingeniería Civil

Tiempo: medición del tiempo de ejecución requerido por el algoritmo en su peor ejecución.

• Varía entre algoritmos.

• Varía entre implementaciones.

• Varía entre diferentes ordenadores.

• Se requieren múltiples entradas para observar la
tendencia de los tiempos de ejecución.

• No se puede recoger de manera precisa los
tiempos requeridos de ejecución en función de las
entradas del algoritmo.

1.1. Métodos de medición

G1962 - Programación Grado en Ingeniería Civil

Operaciones: conteo de las operaciones realizadas por el algoritmo en su peor ejecución.

• Varía entre algoritmos.

• Varía entre implementaciones.

• No depende del ordenador donde se ejecute.

• No se define muy claramente qué operaciones
requieren un coste tal que deben ser contadas.

• Se puede recoger de manera precisa el número de
instrucciones ejecutadas en función de las
entradas del algoritmo.

1.1. Métodos de medición

G1962 - Programación Grado en Ingeniería Civil

• Necesitamos considerar las entradas de nuestro
algoritmo para obtener su coste.

• Generalmente al igual que con el conteo de
operaciones tenderemos a considerar el caso peor
de entre los posibles.

• Queremos obviar las operaciones triviales y
centrarnos en el cuello de botella de nuestros
algoritmos.

• Queremos eliminar todas las variables que no
sean puramente algorítmicas.

Ordenes: estudio del código obviando el conteo de órdenes individuales y centrándose en la
ejecución de grandes conjuntos de instrucciones para el peor caso del algoritmo.

1.1. Métodos de medición

G1962 - Programación Grado en Ingeniería Civil

Ordenes: estudio del código obviando el conteo de órdenes individuales y centrándose en la
ejecución de grandes conjuntos de instrucciones para el peor caso del algoritmo.

• Operaciones (search): 1 + 3n + 1

• Orden de crecimiento (search): O(n)

Operaciones O()
2 + 5n + n2 O(n2)
2n + 3n10 O(2n)

7 + n3 + 1000n O(n3)

1.1. Métodos de medición

G1962 - Programación Grado en Ingeniería Civil

Ordenes: estudio del código obviando el conteo de órdenes individuales y centrándose en la
ejecución de grandes conjuntos de instrucciones para el peor caso del algoritmo.

• Sumatorio de ordenes:

O(n) + O(n) = O(n + n) = O(2n) = O(n)

• Multiplicación de ordenes (anidación):

O(n) * O(n) = O(n * n) = O(n2)

1.1. Métodos de medición

G1962 - Programación Grado en Ingeniería Civil

Ordenes: estudio del código obviando el conteo de órdenes individuales y centrándose en la
ejecución de grandes conjuntos de instrucciones para el peor caso del algoritmo.

• Varía entre algoritmos.

• No varía entre implementaciones sino entre
algoritmos.

• No depende del ordenador donde se ejecute.

• Obvia las instrucciones triviales centrándose
solamente en los bloques que requieren gran carga
computacional.

• Se puede recoger de manera precisa el número de
instrucciones ejecutadas en función de las
entradas del algoritmo.

2. Clases de complejidad

G1962 - Programación Grado en Ingeniería Civil

• Describen el orden de crecimiento del algoritmo en función de las entradas del mismo
obviando las instrucciones de bajo coste computacional.

• Permiten estudiar la escalabilidad de nuestros algoritmos mediante la clasificación
directa en una clase concreta, permitiendo extrapolarlo a los tiempos de ejecución.

• Permite evaluar cuando un algoritmo puede utilizarse y cuando los límites
computacionales harán imposible su uso.

• Para clasificar un algoritmo generalmente se utiliza el algoritmo con su peor entrada,
es decir por ejemplo en el caso de búsquedas en listas que el elementos buscado este
en la última posición, haciendo necesario recorrer toda la lista.

2. Clases de complejidad

G1962 - Programación Grado en Ingeniería Civil

! 3 ! log & ! &

! &' ! 2)

2. Clases de complejidad

G1962 - Programación Grado en Ingeniería Civil

Clase n = 1 n=10 n=100 n=1000

!(#) 2 2 2 2

!(%) 1 10 100 1.000

!(%&) 1 100 10.000 1.000.000

!(log %) 0 1 2 3

!(% *+, %) 0 10 200 3000

!(#-) 2 1024 1.267.650.600.228.229.4
01.496.703.205.376 …

k constante de ejemplo igual a 2 y n tamaño de la entrada del algoritmo

2.1. Constante !(#)

G1962 - Programación Grado en Ingeniería Civil

Constante: la complejidad del algoritmo es independiente del tamaño de las entradas.

• Pueden contener estructuras iterativas o
recursivas siempre y cuando estas no dependan
directamente del tamaño de la entrada del
algoritmo.

• La mayoría de algoritmos o funciones sencillas
suelen tener esta complejidad.

• A pesar de poder tener constantes k diversas,
todas se agrupan como de igual coste
computacional y complejidad.

2.2. Lineal !(#)

G1962 - Programación Grado en Ingeniería Civil

Lineal: la complejidad depende directamente del tamaño de la entrada del algoritmo.

• Generalmente son algoritmos sencillos que
simplemente recorren mediante elementos
iterativos y recursivos una lista con una longitud
determinada.

• Algunos algoritmos con esta complejidad son por
ejemplo búsquedas en listas, cálculo de
sumatorios u otra aplicación matemática a todos
los elementos de una lista.

2.3. Polinomial !(#$)

G1962 - Programación Grado en Ingeniería Civil

Polinomial: la complejidad depende generalmente del número de bucles anidados
dependientes de las variables de entrada del algoritmo.

• Dentro de esta familia de algoritmos, los más
comunes son los de orden cuadrático !(#$) ya que
es muy común el uso de dos bucles anidados.

• Pueden darse complejidades polinómicas de mayor
orden, pero generalmente viene asociadas a una
mala producción de código.

• Es un tipo de complejidad que si alcanza un alto
orden de magnitud ha de ser controlada para que
sea viable su ejecución en tiempos razonables.

2.4. Logarítmica ! log %

G1962 - Programación Grado en Ingeniería Civil

Logarítmica: esta complejidad crece de manera logarítmica requiriendo menos tiempo que
la complejidad polinómica.

• Muchos de los algoritmos
optimizados para búsquedas y
ordenación de listas tienen una
complejidad logarítmica.

• Algunos ejemplos de algoritmos
con complejidad logarítmica son
por ejemplo la búsqueda binaria o
la búsqueda por bisección.

• Los algoritmos que impliquen la
aplicación de técnicas de divide y
vencerás suelen tener este tipo de
complejidad.

2.4. Logarítmica ! log %

G1962 - Programación Grado en Ingeniería Civil

Logarítmica: esta complejidad crece de manera logarítmica requiriendo menos tiempo que
la complejidad polinómica.

6 7 13 17 87 121 123 255

6 7 13 17

13 17

Ejecución 1

Ejecución 2

Ejecución 3

Tamaño de lista = 8

Complejidad: O(log n)

log28 = 3

2.5. Exponencial !(#$)

G1962 - Programación Grado en Ingeniería Civil

Exponencial: complejidad generalmente no abordable ya que el coste computacional es
demasiado alto.

• Algunas funciones recursivas o iterativas
generalmente que implican combinatoria, pueden
dar lugar a complejidades de orden exponencial.

• Costes computacionales tan altos pueden dar
lugar a la imposibilidad de resolver el problema
mediante ese algoritmo.

• Se suelen usar algoritmos de aproximación o
probabilistas en lugar de algoritmos deterministas
de tan alto coste.

2.5. Exponencial !(#$)

G1962 - Programación Grado en Ingeniería Civil

Exponencial: complejidad generalmente no abordable ya que el coste computacional es
demasiado alto.

• Permutaciones completas.

• Algoritmos recursivos como Fibonacci.

F(n) = F(n−1) + F(n−2)

• Generación de subconjuntos.

• Algunos algoritmos de fuerza bruta que exploran
todas las posibles combinaciones.

2. Clases de complejidad – Operaciones comunes

G1962 - Programación Grado en Ingeniería Civil

Clase Listas Tuplas Cadenas Diccionarios Conjuntos

Añadir O(1) --- --- O(1) O(1)

Longitud O(1) O(1) O(1) O(1) O(1)

Comparar O(n) O(n) O(n) O(n) O(n)

Eliminar O(n) --- --- O(1) O(1)

Copiar O(n) O(n) O(n) O(n) O(n)

Buscar O(n) O(n) O(n) O(1) O(1)

Algunas estructuras estan optimizadas por la unicidad de sus elementos
mediante funciones llamadas Hash

3. Conclusiones

G1962 - Programación Grado en Ingeniería Civil

• La eficiencia mide qué tan óptimo es un algoritmo o implementación, considerando
tanto el tiempo de ejecución como el espacio de almacenamiento.

• Existen tres métodos principales para medir eficiencia: tiempos de ejecución prácticos,
conteo de operaciones algorítmicas y estudio de órdenes de crecimiento.

• El análisis se centra habitualmente en el peor caso para garantizar que el algoritmo
funcionará razonablemente en todas las circunstancias.

• Las clases de complejidad (constante, lineal, polinomial, logarítmica y exponencial)
permiten comparar la escalabilidad de algoritmos y decidir su aplicabilidad según el
tamaño de entrada.

• Un buen análisis de eficiencia ayuda a elegir y diseñar algoritmos que sean prácticos
y viables para problemas reales.

