G1962 - Programacion

Grado en Ingenieria Civil
Practica 4

Javier Gonzdlez Villa
(19 de diciembre de 2025)

Licencia: Creative Commons BY-NC-SA Internacional |(e)

Recursion

Una vez trabajados los conceptos previos de descomposicién y abstraccion, asi como practi-
cado con la implementacion de funciones en Python, el siguiente paso es entender como estas
funciones pueden llamarse a si mismas con el propdsito de optimizar algoritmos que, a priori,
tienen una alta complejidad. Para ello, en este apartado se trabajara con el concepto de recursion
y su aplicacion mediante cédigo Python.

La funcion exponencial:

Una vez entendido como plantear la estimacion del valor de la funcién exponencial a través de
la serie planteada en la primera parte de la préctica, el siguiente paso es volver a implementar
la misma funcion, pero en este caso de manera recursiva. Para ello, se implementara primera-
mente de forma recursiva una funcion denominada factorial recursivo la cual recibira como
argumento un nimero n y retornard el valor factorial de dicho nimero n!. Posteriormente, se
implementard, pero esta vez de manera recursiva, la funcion exponencial_recursivo la cual re-
cibe como argumentos el nimero = y la cantidad de sumandos, que por defecto son 25. Esta
funcién haré uso de la funcién factorial recursivo para el célculo de los divisores en vez del
bucle iterativo de la primera parte de la practica.

Para comprobar el correcto funcionamiento de los c6digos creados, se puede hacer uso de las
funciones math.exp(x) y math.factorial(n) de la libreria MATH.

Busqueda binaria:

Otro problema muy comun en diversos dmbitos, es también la busqueda en listas ordenadas.
Para ello, normalmente se suele iterar la lista completa hasta encontrar la posicion del objeto
buscado o utilizar algoritmos basados en técnicas de Divide y Vencerds, como puede ser la
bisqueda binaria, presentando una implementacion iterativa como la del siguiente c6digo:

def busqueda_binaria_iterativa(a,L):

menor = 0
mayor = len(L)-1
while (menor <= mayor) :
mitad = (menor+mayor)//2
if (L[mitad] > a):
mayor = mitad - 1
elif (L[mitad] < a):
menor = mitad + 1


https://creativecommons.org/licenses/by-nc-sa/4.0/

else:
return mitad + 1
return -1

Se pide, tras entender el funcionamiento del algoritmo en su version iterativa, implementar
la funcién busqueda_binaria_recursiva(a,L), donde se le pasan como argumentos el objeto a
buscar y la lista de objetos, y el algoritmo recursivo va subdividiendo la lista ordenada en sublis-
tas que vuelve a pasar como argumento a la funcién implementada, realizando una estructura
de pila de llamadas recursivas.

menor mitad mayor
6 7 13 17 87 121 123 255

6 7 13 17 87 121 123 255

Figura 1: Ejemplo de bisqueda binaria con a = 13.
Tras implementar la funcién, genera una lista ordenada de menor a mayor que contenga 20

numeros cualesquiera y prueba ambos métodos para comprobar que funcionan de manera ade-
cuada.



