
G1962 - Programación
Grado en Ingenierı́a Civil

Práctica 4

Javier González Villa
(19 de diciembre de 2025)

Recursión
Una vez trabajados los conceptos previos de descomposición y abstracción, ası́ como practi-
cado con la implementación de funciones en Python, el siguiente paso es entender cómo estas
funciones pueden llamarse a sı́ mismas con el propósito de optimizar algoritmos que, a priori,
tienen una alta complejidad. Para ello, en este apartado se trabajará con el concepto de recursión
y su aplicación mediante código Python.

La función exponencial:

Una vez entendido como plantear la estimación del valor de la función exponencial a través de
la serie planteada en la primera parte de la práctica, el siguiente paso es volver a implementar
la misma función, pero en este caso de manera recursiva. Para ello, se implementará primera-
mente de forma recursiva una función denominada factorial recursivo la cual recibirá como
argumento un número n y retornará el valor factorial de dicho número n!. Posteriormente, se
implementará, pero esta vez de manera recursiva, la función exponencial recursivo la cual re-
cibe como argumentos el número x y la cantidad de sumandos, que por defecto son 25. Esta
función hará uso de la función factorial recursivo para el cálculo de los divisores en vez del
bucle iterativo de la primera parte de la práctica.
Para comprobar el correcto funcionamiento de los códigos creados, se puede hacer uso de las
funciones math.exp(x) y math.factorial(n) de la librerı́a MATH.

Búsqueda binaria:

Otro problema muy común en diversos ámbitos, es también la búsqueda en listas ordenadas.
Para ello, normalmente se suele iterar la lista completa hasta encontrar la posición del objeto
buscado o utilizar algoritmos basados en técnicas de Divide y Vencerás, como puede ser la
búsqueda binaria, presentando una implementación iterativa como la del siguiente código:

def busqueda_binaria_iterativa(a,L):
menor = 0
mayor = len(L)-1
while(menor <= mayor):

mitad = (menor+mayor)//2
if (L[mitad] > a):

mayor = mitad - 1
elif (L[mitad] < a):

menor = mitad + 1

1

Licencia: Creative Commons BY-NC-SA Internacional

https://creativecommons.org/licenses/by-nc-sa/4.0/


else:
return mitad + 1

return -1

Se pide, tras entender el funcionamiento del algoritmo en su versión iterativa, implementar
la función busqueda binaria recursiva(a,L), donde se le pasan como argumentos el objeto a
buscar y la lista de objetos, y el algoritmo recursivo va subdividiendo la lista ordenada en sublis-
tas que vuelve a pasar como argumento a la función implementada, realizando una estructura
de pila de llamadas recursivas.

Figura 1: Ejemplo de búsqueda binaria con a = 13.

Tras implementar la función, genera una lista ordenada de menor a mayor que contenga 20
números cualesquiera y prueba ambos métodos para comprobar que funcionan de manera ade-
cuada.

2


