
G1962 - Programación
Grado en Ingenierı́a Civil

Examen Avanzado

Instrucciones

Crear un único fichero mediante JupyterLab con la extensión ‘. ipynb ’.

Cada ejercicio debe realizarse en una celda por separado dentro del Notebook de Jupy-
ter a excepción de los ejercicios enlazados. Cada ejercicio deberá ser documentado de
manera precisa.

Al finalizar, subir el fichero al apartado Examen Avanzado alojado en Moodle.

Se debe entregar esta hoja de examen como acreditación de asistencia al examen.

Se dispone de un total de 2 horas de examen, tras las cuales la entrega en Moodle se
cerrará, por lo que se aconseja entregar unos minutos antes ya que cualquier entrega
fuera de ese periodo será descartada .

Nombre y apellidos:

Ejercicio 1 (2.5p):

Dado el siguiente código en Python, responder a las siguientes preguntas:

class ParametrosInvalidosError(Exception):
pass

def presion_hidrostatica(p, h):
'''
Entradas: p (densidad del lı́quido en kg/m3)

h (altura del nivel del lı́quido en m)
Retorna: La presión hidrostatica (Pa)
'''
if h < 0 or p <= 0:

raise ParametrosInvalidosError("La densidad del lı́quido y
la altura deben ser valores positivos.")

p_h = p * (9.8) * h
return p_h

try:
presion = presion_hidrostatica(1000, 3)
print(f"La presión hidrostática es de {presion:.2f} Pa")

except Exception as e:
print("Ocurrió un error del tipo (" + str(type(e)) +": " + str(e))

1

Licencia: Creative Commons BY-NC-SA 4.0 Internacional

(0.5p) ¿Cuál es el propósito de la función presion hidrostatica?. Explica brevemente la
implementación propuesta y que estructuras frente a errores se han utilizado.

(0.75p) ¿Qué condiciones pueden generar errores en la ejecución de la función a parte de
los ya previstos? y ¿Qué excepción llevan asociados en Python dichos errores?

(0.5p) ¿Para qué sirve la clase ParametrosInvalidosError y que relación de dependencia
tiene con la clase Exception?

(0.75p) ¿Qué estructuras adicionales de prevención de errores incluirı́as para evitar los
errores de ejecución antes identificados?

2

Ejercicio 2 (1.5p):

Para la gestión de parques eólicos gestionados por una empresa de energı́a renovable, se desea
implementar una clase llamada Aerogenerador con su método constructor asociado (0,5p)
que reciba como argumentos el nombre, capacidad, coste de mantenimiento, latitud y longitud,
y los almacene en atributos de la clase. Esta clase deberá sobrescribir el método especial para
la suma de dos objetos de la clase Aerogenerador (add (self, ...)) de forma que devuelva
la suma de las capacidades de los aerogeneradores al utilizar el operador + entre dos objetos de
la clase previamente definida.

Ejercicio 3 (5p):

Implementar una clase llamada ParqueEolico que tenga como atributo un diccionario inicial-
mente vacı́o llamado aerogeneradores donde las claves serán los nombres de los aerogenera-
dores y los valores los objetos completos. También necesitamos implementar su método cons-
tructor (0.5p) que recibe como argumento el nombre, operador y provincia del parque y lo
almacena en atributos de la clase. Por otro lado, también queremos implementar los siguientes
métodos:

(0.5p) agregaAerogenerador(self, aerogenerador): el método simplemente añade el
aerogenerador introducido como argumento al diccionario de aerogeneradores que la
clase tiene como atributo, utilizando como clave el propio nombre del aerogenerador
introducido.

(1p) eliminaAerogenerador(self, nombre aerogenerador): mediante el uso exclusivo
de manejo de excepciones el método intentará eliminar del diccionario (del(valor a
eliminar)) el aerogenerador asociado al nombre que se introduce como argumento. En
caso de que dicho nombre no exista, deberá retornar un mensaje indicando Error: el
aerogenerador que se desea eliminar no existe.

(0.5p) sumaCostesIterativo(self): implementación iterativa de un método que retorne, a
partir de los aerogeneradores que forman el parque eólico, el coste total de mantenimiento
del parque como la suma de los costes individuales.

(0.5p) sumaCapacidadlRecursivo(self, ...): implementación recursiva de un método que
retorne, a partir de los aerogeneradores que forman el parque eólico, la capacidad total
del parque como la suma de las capacidades individuales.

(1p) representaAerogeneradores2D(self): este método representará, mediante un gráfi-
co de puntos utilizando la librerı́a MATPLOTLIB(scatter(x,y,z)), la ubicación, en términos
de latitud (y) y longitud (x), y la capacidad (z) de los diferentes aerogeneradores que
conforman el parque eólico.

(1p) informeCostes(self, nombreFichero): este método guardará en un fichero de tex-
to de tipo .txt con el nombre especificado en el argumento nombreFichero parte de los
datos almacenados, indicados con (()) en la clase ParqueEolico, siguiendo el formato
especificado a continuación:

3

Parque: << nombre >>
Provincia: << provincia >>
Operador: << operador >>

Cantidad de aerogeneradores: << número de aerogeneradores >>
Coste de mantenimiento del parque: << coste total de mantenimiento >>
Potencia total del parque: << potencia total del parque >>

Ejercicio 4 (1p):

Una vez creadas las clases anteriores, se quiere probar el correcto funcionamiento de los di-
ferentes métodos implementados a través de los siguientes datos referentes al Parque Eólico
Alto Palencia II (Castellón) operado por Acciona Energı́a:

Cuadro 1: Lista de Aerogeneradores

Nombre Capacidad (MW) Coste (MC) Latitud Longitud

Aerogenerador 1 2 1.3 39.97 -0.66
Aerogenerador 2 3 2.1 39.96 -0.66
Aerogenerador 3 2.2 1.7 39.96 -0.65
Aerogenerador 4 3.1 2.5 39.97 -0.66
Aerogenerador 5 1.7 1.2 39.98 -0.65

4

