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Summary: The accurate reduction of tibial plateau malunions can
be challenging without guidance. In this work, we report on a novel
technique that combines 3-dimensional computer-assisted planning
with patient-specific surgical guides for improving reliability and
accuracy of complex intraarticular corrective osteotomies. Preoper-
ative planning based on 3-dimensional bone models was performed
to simulate fragment mobilization and reduction in 3 cases. Surgical
implementation of the preoperative plan using patient-specific
cutting and reduction guides was evaluated; benefits and limitations
of the approach were identified and discussed. The preliminary
results are encouraging and show that complex, intraarticular
corrective osteotomies can be accurately performed with this
technique. For selective patients with complex malunions around
the tibia plateau, this method might be an attractive option, with the
potential to facilitate achieving the most accurate correction possible.
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INTRODUCTION
The knee joint is one of the most critical weight-bearing

regions in the lower extremity. As a consequence, fractures
around the tibia plateau may significantly affect articular
loading, stability, and even range of motion (ROM). The
primary goal in treatment is anatomic reconstruction of the
articular surface and the mechanical axis, aiming to restore
function of the knee joint. Fractures can be treated conserva-
tively for minimally displaced fragments, otherwise surgical
management is recommended.1–3 Well-established surgical
techniques like open reduction and internal fixation (ORIF),
external fixation, or arthroscopically assisted osteosynthesis

can be chosen for this purpose.2,4–13 However, operative man-
agement is challenging14 and may be associated with mal-
union if reduction is imprecise.3,15–17 Malunion can result in
posttraumatic osteoarthritis and loss of function. Ultimately,
salvage procedures such as total knee arthroplasty (TKA) or
rarely knee arthrodesis may be necessary in an end-stage
situation.17

An intraarticular corrective osteotomy, although being
a complex intervention, may be a preferable treatment option
for posttraumatic malunions.15,18 In this procedure, the mal-
united fragment is osteotomized and reduced to its anatomi-
cally correct position according to a preoperative plan.
However, exact quantification of intraarticular malunion is
difficult with traditional imaging techniques because of the
3-dimensional (3D) nature of the deformity. It is even more
challenging to exactly reproduce the preoperative objective
during surgery. Although computer-assisted planning and
guidance techniques are commonly used to support surgeons
in performing TKA and high tibia osteotomies, the surgical
correction of intraarticular posttraumatic malunions with such
methods was so far not addressed. Oka et al19 and Schweizer
et al20 demonstrated the feasibility of combining 3D
computer-assisted planning with patient-specific guides for
correcting complex intraarticular malunions of the distal
radius. In their method, a 3D preoperative plan was created
that relied on the mirrored contralateral extremity. Based on
this plan, individualized rapid-prototyped guides were manu-
factured to precisely reproduce reduction in the surgery.

We have extended the surgical technique proposed by
Schweizer et al20 and report on our early experiences in oper-
ative treatment of posttraumatic intraarticular malunions of
the proximal tibia.

PREOPERATIVE PLANNING AND
SURGICAL TECHNIQUE

The proposed approach relies on computer-assisted
preoperative planning to quantify a malunion and the required
reduction in 3D. As the contralateral tibia will be used as a 3D
reconstruction template, it is required that the contralateral
limb of the patient is asymptomatic without history of trauma
or obvious malalignment. In a first step, 3D triangular surface
models of the pathologic and contralateral normal tibia
are generated. The bone models are extracted from
computed tomography (CT) scans semiautomatically using
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the segmentation functionality of the Mimics software
(Materialise, Leuven, Belgium): Intensity thresholding
and region growing are applied for identifying the cortical
bone layer and for separating the tibia from the surrounding
bone anatomy, respectively.

Computer-assisted preoperative planning is performed
on a standard personal computer using the custom-made
software application CASPA (University Hospital Balgrist,
Zurich, Switzerland). The 3D model of the contralateral tibia is
mirrored and subsequently aligned to the pathologic model
using a surface registration algorithm. As in similar ap-
proaches,21 the iterative closest point method22 is used to super-
impose the undeformed regions of the bone surfaces (ie, the
epiphyseal and meta/diaphyseal parts) in an automatic fashion
by minimizing the quadratic distances between surface points.

Next, the fracture lines and articular step-off have to be
assessed to create the osteotomy plane(s). Dependent on the
pathology, either a single or a combination of multiple
osteotomy planes (ie, curved cut) is required for mobilizing
the fragment that must be reduced. After virtual mobilization,
the anatomic correct position of the fragment was determined
by aligning it to the reconstruction template. By doing so, the
required reduction can be exactly quantified in 3D (ie, 3
degrees-of-freedom in translation and 3 degrees-of-freedom
in rotation) as the relative transformation of the fragment from
its initial to its reduced configuration. However, applying the
so-obtained 3D measurements in the surgery to correct
intraarticular malunion can be challenging.20

One possibility to facilitate this task is the use of
patient-specific guides. The basic idea of such an approach is
that a guide body is molded on the bone surface. The irregular
bone surface around the osteotomy helps to uniquely identify
the location on the bone where the guide has to be positioned.
We have developed different guides for supporting cutting
and reduction.

Dependent on the complexity of the osteotomy, 2
different types of cutting guides are applied. If only 1 planar
cut is required, parallel K-wires (2-mm-diameter) are used to
intraoperatively define the osteotomy plane. Preoperatively,
virtual K-wires, represented by cylinders, are aligned on the
osteotomy plane in the planning application (Fig. 1A). Based
on the cylinders, a guide (cutting guide type I) with drill sleeves
is designed to exactly set the K-wires on their planned position
in the surgery (Fig. 1B). The osteotomy is subsequently per-
formed by guiding the saw blade along the K-wires (Fig. 1C).
A different technique20 is applied for performing curved cuts:
as depicted in Fig. 2, the basic idea of this approach is that the

cut is coarsely defined by consecutively drilling holes that are
spaced between 5 and 10 mm. The position and direction is
defined by drill sleeves that are integrated in a guide (cutting
guide type II). Afterward, the holes are connected with a can-
nulated chisel to complete the osteotomy.

In a similar fashion, K-wires are combined with
guides to reproduce the 3D-planned reduction in the
surgery. The general procedure for creating a reduction
guide is illustrated in Fig. 3. First, cylinders representing
2-mm K-wires are created in the planning application (Fig.
3A). The cylinders are virtually fixed to the proximal and
distal fragments. The corresponding drill sleeves to set the
K-wires in the surgery are typically integrated into a cutting
guide (Fig. 3B). A separate reduction guide is created based
on the position and orientation of the cylinders after simu-
lated reduction (Fig. 3C). It must be noted that such a guide
must consist of 2 pluggable parts because the K-wires are
divergent after reduction. After the osteotomy, the proximal
and distal parts of the guide are slid along the K-wires (Fig.
3D). Thereafter, the parts are stably connected with a click-
ing mechanism to push the fragment to its anatomic correct
position (Fig. 3E). After temporary fragment fixation using
an additional K-wire, each part of the guide is separately
removed, followed by fragment fixation with an osteosyn-
thesis plate.

Based on the guide models provided as STL (Standard
Tesselation Language) files, the guides used in the presented
cases were produced by Medacta International S.A. (Castel

FIGURE 1. Guided single-plane os-
teotomy. A, Virtual K-wires are
aligned to the osteotomy plane in
the 3D planning application. B, In-
traoperatively, the K-wires are set
according to the planning using
a patient-specific guide. C, The os-
teotomy is subsequently performed
by guiding the saw blade along the
K-wires.

FIGURE 2. Guided complex-plane osteotomy. A, Virtual
K-wires are aligned to the osteotomy planes in the 3D planning
application. B, The cut is defined by consecutively drilling holes
using a patient-specific guide. Afterward, the osteotomy is
completed with a chisel.
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San Pietro, Switzerland) with a selective laser sintering
technique based on polyamide PA-12. Sterilization was
performed with conventional steam pressure at 1308C. It
had been validated in laboratory experiments that no shrink-
age can occur at this temperature.

PATIENTS AND RESULTS
The proposed surgical technique was applied to 3 cases,

characterized by an increasing level of complexity. Informed
consent was obtained from all patients preoperatively regarding
permission to report on their medical history and postoperative
results. For each patient, preoperative assessment comprised of
a long leg x-ray and bilateral CT scans (120 kV; axial
resolution: 1 mm; Philips Brilliance 40 CT, Philips Healthcare,
Best, the Netherlands) of the pathologic and the contralateral
(normal) tibia. In all cases, a multiplanar malunion was
confirmed by the 3D analysis (see Table, Supplemental Dig-
ital Content 1, http://links.lww.com/BOT/A300). The overall
preoperative planning time including guide design was
between 2 and 4 hours, depending on the case.

In case 1, a 32-year-old mason had sustained a bicon-
dylar fracture (Schatzker type V, AO/OTA Classification23

41-C3) of the left tibial plateau that was conservatively
treated (Fig. 4). The lateral tibial plateau healed in anatomic
position, whereas the medial part dislocated progressively
(Fig. 5A), resulting in a malunion and anteromedial pain.
The patient was referred to our hospital considering correc-
tive osteotomy 9 months after trauma. Physical examination
revealed unrestricted ROM, tenderness at the medial joint
line, and effusion. The knee was ligamentous stable. Sur-
gery was performed 11 months after trauma with an

anteromedial approach. The pes anserinus was only
released in the proximal part. The superficial part of the
medial collateral ligament was slightly detached anteriorly.
An incomplete subchondral osteotomy was performed using
a cutting guide (type I) and a surgical saw, followed by
anatomic reduction which was guided as well.

In case 2, a 42-year-old painter sustained a multi-
fragmentary fracture of the left tibia with a multipart fracture
of the eminentia intercondylaris (Schatzker type II, AO/OTA
Classification23 41-B3), treated by ORIF in a trauma center.
However, the patient was never pain-free and was referred to
our clinic 6 years later. Clinically, the medial compartment
was still unremarkable with a negative varus stress test while
the patient experienced pain with a substantial subluxation
in the posterolateral defect of the tibia plateau during flex-
ion. Effusion did occur but the knee was ligamentous stable
and had unrestricted ROM. The 3D comparison with the
contralateral tibia revealed a depression in the dorsal half
of the lateral tibia plateau (see Table, Supplemental Digital
Content 1, http://links.lww.com/BOT/A300; Fig. 5A). Four
months after consultation, surgery was performed extending
the former lateral approach. The posterior part of the tractus
iliotibialis was released to expose the tuberculum Gerdy,
which was used as a landmark for the guides. For better
visualization of the posterior part of the joint, an osteotomy
of the lateral femoral condyle was performed. Next, a cutting
guide (type I) was applied and a first cut was performed from
anterior with a surgical saw. Thereafter, the bone was ac-
cessed from the lateral side above the proximal tibiofibular
joint to completely mobilize the fragment using 2 additional
cutting guides (type II) and a chisel.

FIGURE 3. Patient-specific reduc-
tion guide. A, Virtual K-wires are
created and fixed to the fragments.
B, The corresponding drill sleeves
are integrated into a cutting guide.
C, Reduction is simulated, resulting
in divergent K-wires. D, Reduction
guide consisting of 2 pluggable
parts. E, Reduction is completed by
connecting the parts of the guide.
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In case 3, a 29-year-old engineer had a skiing accident,
resulting in a split-depression fracture of the left lateral tibia
plateau (Schatzker type II, AO/OTA23 Classification 41-B3).

The fracture was treated with ORIF in another institution.
Sixteen months after trauma, the patient had a consultation
in our hospital because of persistent pain and considerable

FIGURE 4. Computed tomography
images of the presented cases are
given before and after surgery.
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functional impairment. Evaluation showed a malunion of the
biggest lateral fragment (see Table, Supplemental Digital
Content 1, http://links.lww.com/BOT/A300; Fig. 5A) with
already degenerative changes of the surrounding cartilage.
Because of the young age of the patient, a corrective osteot-
omy was our preferable surgical treatment. Surgery was per-
formed 22 months after trauma. The bone was accessed from
anterolateral, and soft tissue was removed from the lateral
tibial head. Two cutting guides (type II) were applied in com-
bination with a cannulated chisel. One guide was used to
mobilize the fragment as planned, and the other was required
to remove an additional bone wedge. Thereafter, the 2-part
reduction guide permitted correction of the multiplanar
deformity.

In all cases, the fit of the guides seemed to be stable and
well-defined. The postoperative course was uneventful.
Radiologic examination showed that all osteotomies healed
in between 3 and 6 months after surgery. The minimum
follow-up time was between 12 and 14 months. A quantita-
tive evaluation of the reduction error based on postoperative
CT is given in Supplemental Digital Content 1 (see Table,
http://links.lww.com/BOT/A300). The residual error was as-
sessed by comparing the preoperative planning result with the
3D model of the postoperative tibia (Fig. 5B). In cases 1 and
3, no limitation of the ROM was observed and there was no
evidence of effusion. These 2 patients were very satisfied with
the outcome and continued their former job (case 3) or pur-
sued another job (case 1). In case 2, the osteotomy was not

entirely performed as planned because the fragment could not
be mobilized completely to achieve the planned position.
However, failure to mobilize the fragment was not a failure
of the system but of the execution of the procedure. Reason
for the incomplete mobilization was missing guidance of the
chisel in the medial part. Six months postoperatively, this
patient improved in terms of posterolateral pain and sublux-
ation but medial pain increased slightly because of the under-
lying varus osteoarthritis. ROM was not limited, but effusion
was still present. The patient was not able to continue his
former job, primarily caused by pain in the (untreated) medial
part of the knee.

DISCUSSION
In this report, we described a novel technique for

performing complex intraarticular corrective osteotomies
using 3D computer-assisted planning combined with
patient-specific surgical guides.

Surgical treatment of tibial plateau fractures remains
challenging24 and may be associated with severe complication
such as malunion or posttraumatic gonarthrosis.3,25 Therefore,
a corrective osteotomy may be indicated in young adults to
decrease risk of gonarthrosis.3,8,26 Studies3,15,27,28 emphasized
the importance of preoperative planning for exact quantifica-
tion of malunions. Several authors proposed to use 3D-recon-
structed CT to improve assessment of the deformity,15,26,29

although still relying on preoperative planning based on 2D

FIGURE 5. 3D computer-assisted
planning and postoperative accuracy
evaluation. A, Before surgery: the
pathologic tibia is shown in brown
and the fragment to be mobilized is
outlined in red. B, After surgery:
postoperative tibia (in light blue)
compared with planned reduction (in
green).
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radiographs. Mast27 was one of the first reporting on the use
of the contralateral healthy tibia as a 2D reconstruction tem-
plate for unilateral shaft malunions. More recently, 3D sur-
face models of the contralateral bone have been used as
reconstruction templates for the preoperative planning of cor-
rective shaft osteotomies of the lower extremities,30 as well as
for extraarticular31–33 and intraarticular19,20 osteotomies of the
upper extremities. In these studies, patient-specific guides
were applied to accurately reproduce preoperative planning
during surgery. Guides or navigation systems were also used
in the other types of interventions around the knee to support
the surgeon in performing tibial plateau fracture reduction,34

high tibia osteotomies,35–42 or TKA.43,44

We presented a computer-assisted surgical technique
that has been initially applied to the distal radius articula-
tion.20 The proposed approach permitted accurate multiplanar
reduction of 3D deformities. Moreover, it was even possible
to perform complex curved cuts: in cases 2 and 3, a multi-
planar closing wedge osteotomy was performed that required
preoperatively calculating the exact 3D shape of the wedge to
be removed. For completion of such types of osteotomies, the
use of a cannulated chisel is suggested to prevent technical
errors, which may lead to an incomplete mobilization of the
fragment, as observed in case 2. In this case, not even the
reduction of the mobilized part was satisfactory (ie, above 4
degrees residual error), because the repositioning relied only
on manual alignment of congruent osteotomy surfaces. There-
fore, we have further developed the design of the intraartic-
ular guides combining the cutting guides with reduction
guides, as demonstrated for cases 1 and 3. In these patients,
the accuracy of the reduction was within 1 mm and 1.8 de-
grees. These results are promising compared with other stud-
ies, which either were more inaccurate20 or had similar
accuracy under laboratory conditions.45

The study and its proposed surgical technique had
several limitations. First, the method was only applied to
a small number of patients. Clinical scores were not evaluated
because a focus was laid on first describing the surgical
technique and measuring its accuracy. As the type of
procedure may always remain very selective, being only
feasible for a few qualifying patients, it was important for us
to report first experiences to the community. This may help
assessing advantages and drawbacks of this technology and to
decide whether it would be worthwhile to pursue further
development. Moreover, an additional CT would be required
if the contralateral side is used as a reconstruction template,
resulting in increased radiation exposure. On the contrary, the
technique may reduce total fluoroscopy time during surgery.
Lastly, additional expenses for guide manufacturing of
approximately €250 (US $340) arise per case.

In conclusion, the presented technique enabled us to
perform complex intraarticular osteotomies in a controlled
fashion, restoring congruity of the knee joint. For selective
patients with malunions around the tibia plateau, this method
might be an attractive option, with the potential to facilitate
the most accurate correction possible. High accuracy was
demonstrated in 2 of 3 cases. However, benefits must be
confirmed in a prospective clinical study with a larger number
of cases and outcome evaluation.
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