

Advanced Linux System Administration

Subject 11. Network administration (Introduction).

Pablo Abad Fidalgo José Ángel Herrero Velasco

Departamento de Ingeniería Informática y Electrónica

Este tema se publica bajo Licencia:

Creative Commons BY-NC-SA 4.0

- Introduction (TCP/IP).
- Network Interface.
- Link Layer.
- Network Layer.
- Monitoring/Test.

- Protocol "Suite", a set of protocols designed to implement interconnection networks:
 - Origin: research project of the USA defense department (ARPANET).
- Multiple components, arranged hierarchically (stack).

- Protocol "Suite", a set of protocols designed to implement interconnection networks:
 - Origin: research project of the USA defense department (ARPANET).
- Multiple components, arranged hierarchically (stack):
 - UDP, User Datagram Protocol, unverified, one-way data delivery.
 - TCP, Transmission Control Protocol, reliable, full duplex, flow controlled, error corrected conversations.
 - IP, the Internet Protocol, routes data packets from one machine to another.
 - ICMP, the Internet Control Message Protocol, provides low level support for IP: error messages, routing assistance, debugging.
 - ARP, Address Resolution Protocol, translates IP addresses into HW address (MAC).

Encapsulation:

- Data travels on the network in the form of packets, bursts of data with a maximum length imposed by the link layer.
- Each packet consists of a header and a payload:
 - Header: includes Source-Destination and protocol information.
 - Payload: the information (Data).
- As a packet travels down the TCP/IP protocol stack, each protocol adds its own header information.

- Packet Addressing: multiple addressing schemes (at different layers):
 - HW Addressing (link layer):
 - Each net interface has one MAC addr that distinguishes it in the physical network.
 - Ethernet Network: 6 byte direction (2-digit hex bytes: 00:50:8D:9A:3B:DF).
 - IP Addressing (IPv4: 216.58.211.196):
 - Identifies the network interface in Internet. Unique at global level* (NAT & private addr).
 - Physical Address IP address mapping: ARP protocol.
 - Hostname Addressing:
 - Number-based directions hard to remember (216.58.211.196??). Name mapping.
 - File mapping (/etc/hosts) or DNS (world-wide Domain Name Server).
 - Ports:
 - IP identifies the interface, How to identify active services? (multiple connections).
 - Extend IP address with port number: 16 bits identifying a communication channel.
 - Standard services (ssh, ftp, http) are associated to pre-established ports (/etc/services).

IP Addressing:

- **IPv4 vs IPv6:** IPv4 limitations (3 february 2011 no more addresses available):
 - https://www.google.com/intl/en/ipv6/statistics.html (may 2017, below 20%).
- Types of IPv4 addresses: (32 bits divided into 4 8-bit fields a.b.c.d):
 - Determines which portion identifies the network and which one the host.
 - Class A: (N.H.H.H) 1.x.x.x 127.x.x.x (Apple, AT&T, Ford, US DoD...):
 - Network part=a, 126 nets.
 - Host part=b.c.d, +16 millon hosts at each net.
 - Class B: (N.N.H.H) 128.x.x.x 191.x.x.x:
 - +16K nets, 65K hosts per net.
 - Class C: (N.N.N.H) 192.x.x.x 233.x.x.x.
 - Classes D and E: 234.0.0.0 255.x.x.x:
 - Experimental networks and multicast addressing.

0.0.0.0: My own Host (NO net connection)

0.x.x.x: One machine in our network

127.0.0.1: Loopback. Does not reach the NIC.

255.255.255: Bcast in local network.

x.x.x.255: Bcast in specified network.

- Subnetting: A & B oversized, break classes into subclasses:
 - Part of the host identifier is employed to identify the network.
 - Through the network mask (mapping).

- Introduction (TCP/IP).
- Network Interface.
- Link Layer.
- Network Layer.
- Monitoring/Test.

Host / Interface:

- Hosts are computers/individual systems.
- Each host can have one or more network interfaces (NICs) (Cable + WIFI):
 - Each interface represents a connection to a different network (different IP).

Basic network equipment:

- Hubs (level OSI-1): Only interconnects wires.
- Switches (level OSI-2): Ethernet level management (ARP, MAC, etc.).
- Routers (level OSI-3): IP packet management, network level.
- Others: traffic balancing, firewalls...

• Linux does not perform net management through device files:

- ethX has no device file associated (/dev/ethX not found).
- NICs are managed through kernel modules (drivers).

- Configuration (Debian): file /etc/network/interfaces:
 - Establishes the configuration of network interfaces.
 - Allows additional functionality: routes*, alias, pre/post operations...
 - Fields:
 - auto <interface>: activates the interface when the system boots up.
 - iface <interface> <ip_addressing> <method>: interface configuration:
 - ip_addressing: inet (IPv4) / inet6 (IPv6).
 - method: dhcp (automatic) / static (manual, requires additional lines for configuration).
 - *Loopback interface:
 - Communication of network apps hosted in the same system.
 - auth lo.

```
auto eth0
iface eth0 inet static
    address 192.168.1.132
    netmask 255.255.255.0
    network 192.168.1.0
    broadcast 192.168.1.255
    gateway 192.168.1.1
```

- Configuration (Debian):
 - Interface configuration can be modified in a "running" system:
 - STEP 1. Modification. Edit the file (/etc/network/interfaces or command ifconfig).
 - STEP 2. Re-start. ifdown/ifup or reboot the service (/etc/init.d/networking restart).
 - Commands ifup/ifdown: power on/off a network interface:
 - Syntax: ifdown eth0 (power off eth0 card).
 - Command ifconfig: net parameter configuration:
 - Syntax: ifconfig <interface> <address> <options>:
 - Example: ifconfig eth0 192.168.1.13 netmask 255.255.255.198 broadcast 192.168.1.191 up.
 - ifconfig –a prints information about available interfaces.
 - Caution!! Changes made with ifconfig are not permanent (do not modify interfaces file).
- Graphic tools: network-admin, webmin...

- **DHCP** (Dynamic Host Configuration Protocol):
 - The DHCP service performs automatic network configuration for the system:
 - "Renting" parameters from a server: IP, Gateway, DNS, etc.
 - "Safe": allows forcing network configuration based on MAC address.
 - Easier: centralized management of the whole network.
 - Dynamic: information is only valid temporally.
 - Requires a "client" service at each host.
 - How to specify we want to use DHCP:
 - In /etc/network/interfaces:

- · man dhclient.
- ifconfig eth0 up.

- Introduction (TCP/IP).
- Network Interface.
- Link Layer.
- Network Layer.
- Monitoring/Test.

Link Layer

- The physical level in TCP/IP, almost always a ethernet network:
 - Each interface (NIC) has a unique MAC address.
 - Layer in charge of IP Frame <—> Ethernet Frame conversion:
 - Need to map IP address and MAC Address: ARP (Address Resolution Protocol).

— ARP Protocol:

- Search @MAC corresponding to a @IP in the local ARP table (translated address cache).
- If not in the table, it performs a broadcast and the receiver informs. ARP table is updated for future connections.
- When destination is not in local network, the IP route tables are employed, sending the message through the gateway MAC.
- Command arp: manipulation/display of ARP table.
- Configuration/Modification of @MAC:
 - # ifconfig eth0 **hw ether** 00:02:B3:19:C8:21.

- Introduction (TCP/IP).
- Network Interface.
- Link Layer.
- Network Layer.
- Monitoring/Test.

- Through ARP only hosts in my net segment can be reached:
 - Cannot reach further than my hub/switch/router.
 - IP routes must be established for external addresses.
- Route Tables: information about how to reach IP destinations:
 - Destination: identifies destination network.
 - Gateway: how to reach to Destination (* means no forwarding is required, the packet is already in that network).
 - Genmask: network mask (identifies the subnetwork).
 - Iface: network interface to reach destination network.

Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface
192.168.10.0	*	255.255.255.0	U	0	0	0	eth1
127.0.0.0	*	255.0.0.0	U	0	0	0	10
default	192.168.10.1	0.0.0.0	UG	0	0	0	eth1

- Manual configuration of route tables:
 - Command route: modify/show tables:
 - #route –n: shows route tables.
 - Add a route for a network segment:
 - # route add -net 192.168.1.0 netmask 255.255.255.0 eth0.
 - Add the link element to other subnetworks (default route):
 - # route add default gw 192.168.1.1 eth0.
- Dynamic routes (automatic):
 - Static configuration of tables limits their functionality:
 - Valid for stable networks (not very large...).
 - Requires knowledge about network topology.
 - Complex environments: Dynamic Routes:
 - Daemon "routed" or "gated". OSFP, RIP, BGP...
 - Maybe one of the most complex aspects concerning network administration.

Network Address Translation (NAT):

- Routing mechanism for packet exchange between incompatible networks (Public-Private address):
 - Allows a private IP to maintain internet connectivity.
 - For outgoing connections, the router translates the private IP as its own IP.
 - Router keeps information about all outgoing connections, relating them with incoming ones:
 - Outgoing connection: 192.168.1.25(1085) -> 212.106.192.142(1085).
 - Inbound communication: 212.106.192.142(1085) -> 192.168.1.125(1085).

– NAT Types:

- Static NAT: one-to-one mapping, each private IP is assigned a dedicated public IP.
- **Dynamic NAT:** the router has a pool of public IPS assigned dynamically to the private IPs making a request.
- Port Address Translation (PAT): single public IP. The port identifies the private IP.

Network Address Translation (NAT):

Name Resolution:

- Name <-> IP translation, the network phonebook.
- Option 1. Through the file /etc/hosts:
 - Conventional way, editing the file manually or through the command addhost.
 - Reasonable for small and private networks. Not useful for the rest of cases:
 - Adding a new host requires modifying all the /etc/hosts files in the network.
 - Usually employed only for the values required during boot process (localhost, hostname...).
 - Can add the IPs of relevant network servers or those providing essential network services.

— Option 2. Domain Name Service (DNS):

- Dedicated server in charge of performing the conversion.
- Each host must be configured to make use of its corresponding name server.
- The client is configured through the file /etc/resolv.conf.

- Name Resolution: the file /etc/resolv.conf:
 - search: domain search order:
 - When we try to connect to a host without suffix, it auto-completes.
 - ssh si -> ssh si.localdomain.
 - Priority from left to right (first atc.unican.es, then unican.es).
 - nameserver: name server:
 - Try to resolve with the first one.
 - If it fails, keep on descending to lower lines.

```
search localdomain
search atc.unican.es unican.es
nameserver 193.144.193.11
nameserver 193.144.193.22
nameserver 192.168.0.105
```

- Introduction (TCP/IP).
- Network Interface.
- Link Layer.
- Network Layer.
- Monitoring/Test.

Monitoring/Test

- Test Command:
 - Command **netstat:** shows network status:
 - Route table (-r), active connections (-a). Also sockets (TCP).
 - Command ping: packet ECHO_REQUEST (ICMP) to a host:
 - Check if a destination is reachable (warning, firewall & ICMP).
 - Command traceroute: route followed by a packet towards destination:
 - Collects the IP at each gateway traversed.
- Command/Tools for monitoring:
 - Command iptraf: traffic statistics at network interfaces.
 - tcpdump/Wireshark/...: monitoring sent/received data for each connection.
 - netperf: performance measurement for links.
 - More sophisticated ones: MRTG, SAINT, Ganglia-monitor...