UC

UNIVERSIDAD
DE CANTARRIA

open
course
ware

Advanced Linux System Administration

Topic 10. The Linux Kernel

Pablo Abad Fidalgo
José Angel Herrero Velasco

Departamento de Ingenieria Informatica y Electré

Este tema se publica bajo Licencia:
Creative Commons BY-NC-SA 4.0

http://creativecommons.org/licenses/by-nc-sa/4.0/

The Linux Kernel

functions system networking| storage memory processing ‘ irt‘t:':‘f:rc‘e

layers

user space files and memory ! char
virtual proc, sysfs protocol Virtual Virtual Task input
subsystems le system families fle system memory asks subsystem

\ N el

bus network disk
controllers: cards: controllers: MMU, RAM
PCl, USB Ethernet, WiFI IDE, SCSI

display
keyboard
mouse, audio

electronics

Index

Introduction:
— Kernel types.
Static Reconfiguration:
— Configuration.
— Compilation.
— Install.

Dynamic Reconfiguration:

— /[proc.
— LKM: Loadable Kernel modules.

Device Driver Modules.

Applications

|

Kernel

Introduction (Kernel)

CPU

Memory

{Devices

|

* Hides HW under an abstract, high level programming interface.

* Creates these concepts from low-level HW features:
— Processes (time-sharing, protected address spaces).
— Signals and semaphores.
— Virtual memory (swapping, paging, mapping).
— Filesystem (files, directories namespace).
— General input/output (specialty hw, keyboard, mouse, USB).

— Communication (between processes / network connections).

 Linux kernel mostly written in C (+ a few assembly (/linux/arch)).

* Source code available (git repository):
— https://github.com/torvalds/linux.

https://github.com/torvalds/linux

Introduction (Kernel)

* Two basic approaches:

— Monolithic kernels:
* All functionality is compiled together. : ':'ﬂ' J

Policies
* All code runs in privileged kernel-space.

) File
Device Systems
Drivers

[l Gl Third-Party Code
Memory A
Manager CPU Device

Scheduling Driver

Security
Policies =757 Device

Handling Driver

%
System), File
APIs ~ System

Program
Loader

* Modular kernel (also monolithic):

— Most functionality compiled into the kernel,
some functions loaded dynamically.

— All functionality runs in kernel-space.

— Microkernels:

* Only essential functionality is compiled.

* All other functionality runs in user space.

Introduction (Kernel)

e Usually, distributions include a kernel generic enough to avoid
further reconfiguration.

 However, reconfiguration is sometimes unavoidable:
— Adding a new hardware device.

— Performance optimizations:

* Pre-compiled kernels provide many

unnecessary components (compatibility). frem Mines %
. . ./usr 845 0.0042
— Routine updates (security patches). init 5,739 0.0283
./samples 8,758 0.0432
. /1 8,926 0.0440
* How can we “adjust” the kernel?: vire 10,701 0.0527
2 H . ./tool 532,123 1.1438
— Statically, re-compiling the whole kernel: IO b
* (Source code + compiler + a few more things). leemme 20T o
. /sound 886,892 4.3703
—_ ./net 899,167 4.4307
Dynamically, through /proc params or = 895,167 4.4307
mOdU|ES. ./arch 3,398,176 16.7449

./drivers 11,488,536 56.6110

Index

 Static Reconfiguration:
— Configuration.
— Compilation.
— Install.

Static Reconfiguration Working Directory:
Jusr/src
e Step 1. Obtaining kernel source code:

— From www.kernel.org (recommended stable versions):

* Complete version: linux-4.X.X.tar.xz (~80MB).

* Patches: patch-4.X.X.xz (~50-100k). (Applied to current kernel, with patch command).
— From repositories:
e apt-get install linux-source-4.X.X.
* Step 2. Configuration:

— Kernel configuration in file /usr/src/linux-4.X.X/.config:

* Each line contains a keyword (device/subsystem) and an argument: CONFIG_SCSI=y.

* Driver can be not selected (#), built into the kernel (=y) or built as a module (=m).
— Extremely complex process, requires deep hw and system understanding.

— Two ways to create .config: from scratch or adjusting a well known config.

www.kernel.org

Static Reconfiguration

e Step 2. Configuration (cont.):

— From scratch: make <config/menuconfig/xconfig>:
» config: starts a character based question and answer session.
* menuconfig: starts a terminal-oriented configuration tool (requires ncurses package).

» xconfig: X based configuration tool.

— From scratch (2): make defconfig:

 creates a config file that uses default
Semngs based on the Current config — Limx Kernel v2,6.24 Configuration

) .
system’s architecture. Limux Kernel Configuration

Arrow keys navigate the menu, <Enter> selects submenus -—->,
Highlighted letters are hotkeys, Pressing <Y> includes, <N> excludes,
<{M> modularizes features, Press <Esc><Esc> to exit, <?> for Help, </>
for Search, Legend: [*] built-in [] excluded <M> module < >

|
[*] Enable loadable module support --->
-*- Enable the block layer --->
Processor type and features --->
Power management options --->
Bus options (PCI etc,) --->
Executable file formats / Emulations --—->
Networking --——>
levice Drivers -—->
Firmware Drivers --—->

Select. < Exit > < Help >

Static Reconfiguration

e Step 2. Configuration (cont.):
— Adapting a pre-built .config: make <oldconfig/silentoldconfig>:

* oldconfig: update a config file (copied from another system or from previous kernel)
to be compatible with the newer kernel source code (questions).

* silentoldconfig: do not show questions answered by the config process.

— More building options: make help.

e Step 3. Compilation:

— Build the kernel + System.map :

* [root si ~] make bzImage (after correct compilation kernel appears in arch/i386/
boot).

— Build modules (see next section):

* [root si~] make modules.

— Build ramdisk if modules are required to access booting device:
* [root si~] mkinitrd —o /boot/initrd-4.X.X.img 4.X.X. (Example: our FS uses LVM/RAID).

Static Reconfiguration

e Step 2. Configuration (cont.):
— Adapting a pre-built .config: make <oldconfig/silentoldconfig>:

* oldconfig: update a config file (copied from another system or from previous kernel)
to be compatible with the newer kernel source code (questions).

* silentoldconfig: do not show questions answered by the config process.

— More building options: make help.

e e Symbol (variable/function) to address table
. [)
Ste p 3) com pl Iatlon * Example: ffffffff8104d148 t swap_pages

— Build the kernel +|System.map|: Employed for debugging kernel crashes

* [root si ~] make bzImage (after correct compilation kernel appears in arch/i386/
boot).

— Build modules (see next section):

* [root si~] make modules.

— Build ramdisk if modules are required to access booting device:
* [root si~] mkinitrd —o /boot/initrd-4.X.X.img 4.X.X. (Example: our FS uses LVM/RAID).

Static Reconfiguration

* Step 4. Installation:

— Copy kernel image, System.map and ramdisk to /boot:
* [root si~] cp arch/i386/boot/bzlmage /boot/bzlmage KERNEL-VERSION.
* [root si~] cp System.map /boot/System.map-KERNEL VERSION.
* [root si~] In —s /boot/System.map-KERNEL_VERSION /boot/System.map.

— Install kernel modules (already built):
* [root si~] make modules_install (installed in /lib/modules/KERNEL_VERSION).

— Configure bootloader (grub?2):
* [root si~] update-grub.

* Do not remove old kernels (new might not boot). Put them in /boot/grub/menu.lst.

title Test Kernel (4.X.X)
root (hdO,1)
kernel /boot/bzImage-4.X.X ro root=/dev/sdal ro quiet
initrd /boot/initrd-4.X.X.img

Static Reconfiguration (DEBIAN)

* Debian provides tools to compile + build a package for the kernel:
— Append compiled kernel information to the software database.
— Ease the management of multiple kernels (clean).

— All the tools included in kernel-package (apt-get install kernel-package).

* Alternative Steps with debian (make-kpkg):
— Step 2. Configuration: make-kpkg --config:

* Equivalent to make oldconfig.
— Step 3. Compilation: make-kpkg --initrd kernel_image modules_image:

* Generates a .deb file with name: linux-image-[version]_[arch].deb.

 Recommended to do a make-kpkg clean previously.

— Step 4. Installation: as easy as dpkg -i linux-image-XXX.deb.

Index

 Dynamic Reconfiguration:

— /[proc.
— LKM: Loadable Kernel modules.

Dynamic Reconfiguration

* Kernel recompilation is not a usual task (very complex and delicate).

Usually, kernel is “fine-tuned” dynamically:
— Through /proc directory and/or Loadable Kernel Modules (LKM).

* /proc: pseudo File System representing current kernel status:

— Details about system hardware (/proc/cpuinfo or /proc/devices).

— Information about any process currently running:

e cmdline: command line arguments.

cwd: link to current working directory.

* environ: env variables. [root si /tmp] 1s /proc/2719
attr environ mem root

* €exe: executable. auxv exe mountinfo sched

* maps: memory maps to executable cgroup £d mounts sessionid

é&library'ﬁles. clear refs fdinfo mountstats smaps

cmdline io net stat

* mem: memory held by process. coredump filter limits oom adj statm
cpuset loginuid oom_ score status

* ...(see man proc).

cwd maps pagemap task

Dynamic Reconfiguration (/proc)

* /proc employed for:
— Input (configuration): echo 32768 > /proc/sys/fs/file-max.
— Output (monitoring): /proc/stat.
e Command sysctl: configure kernel parameters at runtime:

— Syntax: S sysctl [option] <arguments>:
e Option —a: display all values currently available.
» Option —w: change a variable value (sysctl —w proc.sys.fs.file-max=32768).
e Option —p: load settings from a file.
* _https://www.kernel.org/doc/Documentation/sysctl/kernel.txt.

* Permanent modifications: /etc/sysctl.conf.

https://www.kernel.org/doc/Documentation/sysctl/kernel.txt

Dynamic Reconfiguration (LKM)

* Loadable Kernel Modules (LKM):

— Add code to the kernel while it is running (avoiding recompilation).

 Advantages:
— No need to rebuild the kernel (keep using the untouched kernel).

— Easier system problem diagnosis:
e Kernel -> running; Kernel + LKM -> died; problem located at Module.

— Faster development/maintenance (no rebuild/reboot).

* But...:

— Some pieces MUST be built into the base kernel:

* Anything required to boot far enough to load LKMs, for example, the driver of the
disk drive that contains root filesystem.

Dynamic Reconfiguration (LKM)

e What LKMs are used for:

— Device drivers: allow communication between kernel and a piece of HW.

— Filesystem drivers: interpret the contents of a File System as files and
directories.

— System calls: make your own syscall or modify an existing one.
— Network driver: interprets a network protocol (IPX link -> IPX driver).
— TTY line disciplines, executable interpreters.

e Where are modules:

— Files with extension .0 and .ko (since 2.6 version).
— /lib/modules/4.X.X.

alu@si:/lib/modules/3.16.0-4-amd64/kernel/drivers$ 1s
arch crypto drivers fs 1lib mm net sound

Dynamic Reconfiguration (LKM)

e LKM Administration:

— Command insmod: insert a module into the Linux kernel:
* Syntax: S insmod <module_files> [params].

— Command ismod: show the status of modules in the Linux kernel:

* Reads the content of /proc/modules.
— Command rmmod: remove a module from Linux kernel.

— Command modinfo: show information about a kernel module:

* Syntax: S modinfo [modulename/filename].

— Similar to software packages, many modules are not self-contained,
and rely on other modules to load and operate successfully.

— Command depmod: generate the file modules.dep and map files.

— Command modprobe: insert a module into the kernel, solving
previously dependencies.

Dynamic Reconfiguration (LKM)

Automatic LKM Loading and Unloading:

— A LKM can be loaded automatically when the kernel first needs it
(through the kernel module loader).

— Kmod service performs background monitoring, making sure modules
are loaded by modprobe (a user process that executes modprobe is
created) as soon as they are needed by the kernel.

— Optional part of the Linux kernel (select CONFIG_MODULES in .config).
— Example:

* [root si ~] rmmod vfat fat.
* [root si ~] mkfs.vfat /dev/fdO.
* [root si ~] mount /dev/fdO.

— File /etc/modules lists the modules that must be loaded at boot time.

Dynamic Reconfiguration (LKM)

Automatic LKM Loading and Unloading:

— A LKM can be loaded automatically when the kernel first needs it
(through the kernel module loader).

— Kmod service performs background monitoring, making sure modules
are loaded by modprobe (a user process that executes modprobe is
created) as soon as they are needed by the kernel.

— Optional part of the Linux kernel (select CONFIG_MODULES in .config).
— Example:

* [root si ~] rmmod vfat fat.
* [root si ~] mkfs.vfat /dev/fdO.

e m

— File /etc/modules lists the modules that must be loaded at boot time.

Dynamic Reconfiguration (LKM)

* Installing new Modules from their source code:

Example: add support for a new network device named “snarf”.

in /usr/src/linux-XXX/drivers/net create the directory snarf and copy
inside the .c and .h files provided by the developer.

Modify the following files:

* drivers/net/Makefile: add “obj-S(CONFIG_SNARF_DEV)+= snarf/.
* drivers/net/Kconfig: add 2 lines: 1. “config SNARF_DEV” 2. “Tristate ‘Snarf device

support’:

— Tristate means it can be built into the kernel (Y), built as a module (M) or not built at all (N).

* First line allows selecting the device in configure, second line says it can be loaded

as a module.

Compile the module and copy the .ko to /lib/modules.

Better option: follow the procedure.

make modules SUBDIR=..
make modules install SUBDIR=..
depmod

modprobe <module name>

Dynamic Reconfiguration (LKM)

* Installing new Modules from their source code:

— Example: add support for a new network device named “snarf”.

— in /usr/src/linux-XXX/drivers/net create the directory snarf and copy
inside the .c and .h files provided by the developer.

— Modi All these steps are not strictly necessary for loading your module into the kernel.

* di They are required if you want to include this module into the monolithic part.
e d
S

They are required if you want to manage your module through .config file.

Compiling and using insmod is enough.

* First line allows selecting the device in configure, second line says it can be loaded
as a module.

— Compile the module and copy the .ko to /lib/modules.

— Better option: follow the procedure.

make modules SUBDIR=..
make modules install SUBDIR=..
depmod

modprobe <module name>

Dynamic Reconfiguration (LKM)

 Installing new Modules:

— Fortunately developers usually provide modules with some level of
automation for installation.

— Kernel Patch (compiled and installed as a module):
* [root si ~] cd /usr/src/linux; patch -pl < patch_file.
* The patch leaves its code in /usr/src/linux/drivers.

cd /usr/src/linux

e Build the kernel and install. : 2::: EZjEizz—ggzﬁi‘;f

make modules install SUBDIR=..
modprobe <module name>

— Script (the common case):
* The developer provides a .tgz including an installation script that performs the whole task.
e LKMs can be EXTREMELY complex.

Index

 Device Driver Modules.

Device Driver Modules

* Device: name of a physical or logical device:
— Physical: disk, tape, sound card...
— Logical: terminal, net port...
* Device Driver: kernel modules that define the communication

between the kernel and a device:
— Interrupts, DMA, data transfer...

Device File: special files that allow apps to interact with devices
through the kernel:

— Do not contain data, just a “frontend” to access device management
function inside the kernel.

Device Driver Modules (Device File)

brw-r----- 1l root root 8, 0 Mar 10 2006 /dev/sda

* Main features:

— Physical: character (serial/parallel ports, sound card) or block (Hard disk)
device.

— Major and Minor device numbers:
* Major indicates the driver being used with that file (from the list in /proc/devices).

* Minor is employed by the driver to identify multiple devices using the same driver
(Partitions).

 All device files are found in /dev directory:

— Standard devices (stdin, stdout, stderr), memory (mem) virtual mem
(kmem).

— Specials (null, zero, random).
— IDE devices (hdXX), USB/SCSI/SATA (sdXX), RAID devices (mdXX).

— Virtual terminals (ttyX), parallel and serial ports (lpX), optical devices
(CDRom).

Device Driver Modules (Device File)
r ————— 1 root root ar 10 2006 /dev/sda

* Main features:

— Physical: character (serial/parallel ports, sound card) or block (Hard disk)
device.

— Major and Minor device numbers:
* Major indicates the driver being used with that file (from the list in /proc/devices).

* Minor is employed by the driver to identify multiple devices using the same driver
(Partitions).

 All device files are found in /dev directory:

— Standard devices (stdin, stdout, stderr), memory (mem) virtual mem
(kmem).

— Specials (null, zero, random).
— IDE devices (hdXX), USB/SCSI/SATA (sdXX), RAID devices (mdXX).

— Virtual terminals (ttyX), parallel and serial ports (lpX), optical devices
(CDRom).

Device Driver Modules (Device File)

Pseudo Devices (logical):

— Appear in /dey, but do not correspond to real hardware devices:
» Example: console connections are assigned a TTY(serial pseudo-terminal).

* More: remote connections (/dev/pts/X), specials (/dev/null).

e Using dev files (same as the rest of files):
— Example: reproducing a sound: [root si~] cat sound.au > /dev/audio.

— Useful tool: [root si~] In —s /dev/null .history.

* Manual creation of dev files:

— Script MAKEDEV.
— Command mknod: create a block/character file (dev file):

* Syntax: S mknod <file_name> <type> <major> <minor>.

Device Driver Modules (Device File)

* From 2.6, /dev is automatically controlled by udev:

— Udevd service: when a device is added or removed from the system,
the kernel informs udev (- hotplug).

— According to the content in /etc/udev/ (rules for device creation),
udevd will create a device file in /dev.

* The /sys directory (sysfs):

— Introduced in kernel 2.6. This is a pseudo File System (similar to /proc):
* It has detailed information about status and configuration of present devices.
* View device topology as a simple file system.
* Previously, most of this information could be found in /proc.

— Relatively new, many features still not used:

* In the future might replace /dev and udev.

