UC

UNIVERSIDAD
DE CANTARRIA

open
course
ware

Advanced Linux System Administration

Topic 2. Command Line (Shell)

Pablo Abad Fidalgo
José Angel Herrero Velasco

Departamento de Ingenieria Informatica y Electré

Este tema se publica bajo Licencia:
Creative Commons BY-NC-SA 4.0

http://creativecommons.org/licenses/by-nc-sa/4.0/

Index

* The shell.

* File System.

* “Shortcuts”.

* User management.

* Environment Variables.

* Redirection and Pipes.

* Shell Scripting.

* Process management.

* Advanced Administration commandes.

applications

The shell

* Interface for system calls: brary
— POSIX Compatibility (independent of the system).

— Move from user mode to supervisor mode: TRAP.
— Usually from C language.

e Command Interpreter:

— Same privileges as other program.

— Multiple interpreters available: sh, csh, ksh, tcsh, bash...

— Responds with the prompt: test@si:~S (hormal account:S, root account:#).
* Session (login + passwd):

— Local Access: 6 consoles in text mode (Ctrl+Alt+F1...F6) and 1 graphic
console (Ctrl+Alt+F7).

— Remote access: through network (telnet, rlogin, ssh...).

applications

The shell

* Shell Types: routines
— Bourne shell “sh” (/bin/sh): old UNIX syntax (SysV).
— C shell “ecsh” (/bin/csh): C-like syntax (BSD).

— Bourne Again shell “bash” (/bin/bash): Similar to its antecessor, but
extended with many features from csh.

— Tesh “tesh” (/bin/tcsh): improved version of the original C shell.
— In general, differences are not relevant for day-to-day use.

* Shell Goal: interactive dialog between user and system:

— Through a huge amount of orders/commands and applications:
* Change execution mode (background/foreground).
* Input/Output redirection.
 Command Pipes and redirection.
* Scripting.
e 100% Customizable.

applications

The shell

e Command structure: library

routines

user@machine:~$ command -<options> [arguments]

— Options: command pieces that modify the initial behavior.

— Arguments: file name or any other kind of data needed by the
command.

* Man command (formats and displays manual pages):

— First command to learn. Displays on screen information about a
command, programming function, configuration file, etc.

— Syntax: S man -<options> [command]:
* —a: display all the manual pages that match “command”, not just the first one.
» —K: search for the specified string in all man pages.

applications

The shell

e Man command: sections: library

routines

— Manual organized in sections. /usr/share/man:

* Usually, searching is performed in a specific order through all the sections, and only
the first matching is displayed.

* If the command specifies the section, search is only performed in that section.

— Manual sections:

1. User commands.
System Calls (functions provided by the kernel).
C Library functions (system library functions).
Devices and special files (usually found under /dev).
File formats and conventions. Example /etc/passwd.
Games.
Miscellanea: man(7), groff(7).

©® N O Uk WD

System administration tools and Daemons.

applications

The shell

* Man command: configuration: ibrary

routines

— Through the file /etc/manpath.config:

» Can make use of a different configuration file: S man —C new _file.

— The command manpath indicates the routes to look for the manuals:

* Can also be modified, through S man —M path or modifying the environment
variable SMANPATH.

— The section order for searching can also be modified: SMANSECT.

— The application employed to display manual pages can also be chosen:
SPAGER (by default: less).

— Also the language can be selected: SLANG.

Index

* File System.

dev

home

File System

jono

mako

cory

work

photos

Definition:

— Logic structures and their corresponding methods employed by the
Operating System to organize the files in the disk.

Tree-like Hierarchical structure:

— Efficient management of information (group related info into folders).

— Folders separated by /

— File access (path):
* Absolute: cd /home/pepe.

» Relative to current path (with “” o0 “..”): cd ../../../usr/local.

Files starting with “” are “hidden”.

Security: protection of files against unauthorized accesses.

etc

dev

home

File System

jono

mako

cory

Unit Mounting:

work

photos

— A storage device (usb, cd, etc.) can be associated with a particular position

in the directory tree.

Same treatment to files and I/O devices:

— Same program can employ files and/or devices indifferently.

Different locations of the file tree can be linked (In command).

Definition of a folder/file path:

— Directories to be traversed, starting from root directory, in order to reach

that folder/file.

File System

/
/bin
/boot
/dev
[etc
/mnt

/lib

[opt
[root
/sbin
/proc
/tmp
Jusr
Jusr/local

[var

Root directory.
Core operating system commands.

Kernel and files needed to load the kernel.

Device entries for disks, printers, pseudo-terminals, etc.

Critical startup and configuration files.

Temporary mount points, mounts for removable media.

Libraries, shared libraries and parts of the C compiler.

Optional software packages (not consistently used).
Home directory for the superuser.

Command needed for minimal system operability.
Information about all running processes.
Temporary files.

Hierarchy of secondary files and commands.
Software installed by users.

System specific data and configuration files.

etc

dev

home

Sr

|| v |

jono

mako

cory

work

photos

lib

File System (Commands)

Large amount of shell command to interact with FS.

For a detailed description, take a look at the APPENDIX or consult
system man pages.

Navigating through the file system:
— Command pwd: displays current.

— Command cd: change to a different directory.
— Command mkdir: create a new folder.

File Manipulation:
— Command lIs: list folder contents in alphabetical order.
— Command cp: copy files.
— Command mv: move files (or rename).
— Command rm: remove files or folders.

File System (Commands)

e File Manipulation (cont.):
— Command In: create a link between two files.

— Command whereis: locate the path of a cmd’s binary/src code/manual.
— Commands locate/find: locate a file in the directory tree.

* File Contents:
— Commands cat/more/less: show the contents of a file.
— Command wc: count the number of bytes/words/lines in a file.
— Commands head/tail: display in stdout the first/last lines of a file.
— Command grep: display the lines of a file that match a text pattern.
— Command tar: add the contents of a file tree to a single file.
— Command cut: remove specific sections of each line of a file.
— Command sort: arrange file lines in specific order (alphabetical).
— Command vi: text editor in the terminal (present in every UNIX system).

Index

 “Shortcuts”.

Shortcuts

Some simple “tricks” that might make your life a bit easier...

Commands/filenames/paths can be autocompleted:

— Tab (in bash).

— If it cannot be completely resolved, a list with all the alternatives is displayed.
Moving the cursor through the command line (prompt):

— [Ctrl+a]: go to the beginning of the command. [Ctrl+e]: move to the command
end.

— Cursor Left/Right: move through the command line (char by char).
— [Ctrl left/right]: move word by word.

Navigating through the command history:
— Easiest way: Cursor Up/Down.

Shortcuts

* Command history:

— The commands employed in a shell session are stored. With this command we
can review command executed, repeat or edit previous commands:
 Il: execute again the last command of the list (previous command).
» lletters: execute again the last command executed starting with the letters indicated.
* Inumber: execute the command in the list with that number.

— List size can be configured (SHISTSIZE in bash) (set).

 Employing regular expressions:

— Some characters cannot be employed in filenames, having a special purpose:
o “*¥”:.replace all characters: SIs -l pa* //S rm -fr /* (oops!!).
o “?”:replace a single character: S rm pepe? (remove pepea, pepeb, pepec, etc.).
* “[]”: replace a single numerical character: S rm pepe[12] (remove pepel and pepe2).
o “fV: for expansion: Srm p{e,i}pe (removes pepe and pipe).
o “~”.designates SHOME directory.

— What if | need to search the character * in a file? (\ o “”).

Index

* User management.

User Management

* In UNIX, users are organized in groups.

* The files /etc/passwd and /etc/group contain information about all
the users and groups of the OS:

— As well as system login, these files include basic user configuration (home
directory, shell).

— Group management: useful to control access to certain parts of the system.
— For each user, passwd file contains a line with the following format:

user xt505(7051User -/home/usuario:/bin/bash

—» Complete name L Home directory and
associated shell

GID: group ID

— UID: user ID, unique number.

= Encrypted password -> /etc/shadow
— User name

User Management

* The file/etc/shadow manages user passwords:
— For each user, the file shadow contains a line with the following format:

rootiS1SmFxrUn4PS0/5y9xxxBnfUXma.6hhc2.;15742{0:99999:7: : :

— Encrypted password
—» Username

Last pass modification (days <
since 1 January 1970)

Minimal number of days
between pass modifications

Max number of days
between pass modifications

User Management

Based on users and groups, UNIX implements a protection
mechanism for the File System based on permissions.

Each file (and folder) has a single owner and access permissions.

The different permissions are:
— Read (r): allows read access to the contents (list directory files).
— Write (w): allows content modification (create/remove/move files).
— Execute (x): execute a file (no specific extension is required (windows exe)).

File permissions can be configured according to three types:

— User: file owner.
— Group: rest of the users from the same group as the owner.
— Rest: rest of system users.

User Management

* Conventional users only have write permissions in their SHOME
directory: /home/<usuario>:

— Also in temporary directories (such as /tmp).

e Superusers (system administrators) have unlimited access to the
whole file system (Warning!!).

* Information about file/directory permissions with [Is —I]:

S 12014 Apr 13 14:11 filel

user
group
rest
owner
group

User Management (Commands)

* Detailed description in the APPENDIX.

* Basic user management:
— Command whoami: displays username.
— Command who: shows users connected to the system.
— Command passwd: change user password.
— Command finger: shows the status of a user in the system.
— Command write: sends a txt message to other user’s terminal.

* File Permission management:
— Command chmod: modify file or directory permissions.

— Command chown/chgrp: modify UID/GID of a file.
— command umask: modifies default permissions assigned to new files.

Index

* Environment Variables.

Environment Variables

Group of shell session variables with a pre-defined value. Their value
is obtained this way: S echo SVARIABLE.

Allow the configuration of certain aspects in the cmd interpreter.

Two kinds:
— User variables: internal to our shell session:

* Can be listed with command env.
— System variables: common to every shell and other programs and users:

e Can be listed with command set.

Environment variables can be modified:

— csh-like shells (csh, tcsh, zsh): setenv/unsetenv:
* Example: S setenv PATH /usr/local/bin:/bin:/usr/bin.

— sh-like shells (sh, ksh, bash): export:
e Example: S export PATH=/usr/local/bin:/bin:/usr/bin.

— After leaving a session, all modifications are lost.

Environment Variables

e Shell configuration files:

— Obijective: give a value to environment variables. Allows the permanent
modification of shell aspect and behavior (changes are not lost).

— Bash loading sequence (last file overwrites the rest):
» [etc/bashrc > /etc/profile > SHOME/.bashrc > SHOME/.bash_profile.
» Different for each kind of shell.

— File example(bash):

.bashrc
User specific aliases and functions
alias rm='rm -i'

alias cls="clear"
The alias command allows alias cd..="cd .."

command re-definition

(more friendly sheII) # Source global definitions

if [-f /etc/bashrc]; then
. /etc/bashrc
fi

alias 1ls="1ls --color -shafF"

Environment Variables

 Some important internal variables:

— SPATH: indicates which are the directories where binaries can be found.
Before executing a command, the shell searches in those directories.

— SHOME: root directory of current user.
— STERM: kind of terminal we are employing to connect to the system.
— SSHELL: user shell. Ex. /bin/bash.

— STZ: time zone. Has an influence on the timing format returned by date
command. Any change in our files adjusts to the time zone specified by that
variable.

— S$*¥*¥*¥*¥*.in the man page of each shell we have the complete repertory of its
environment variables.

Index

* Redirection and Pipes.

Redirection and Pipes

* In linux, always three files (remember, devices treated as files)
opened by default: stdin (keyboard), stdout (screen) y stderr (also
screen).

* By default:

e These files can be redirected.

Redirection and Pipes

* Definition: redirection consists of the capture of a file/command/
program output in order to send it as input to another file/
command/program.

e Standard input redirection: do not use keyboard as input:

— Syntax: S sort < item.
ﬁ sort r

e Standard output redirection: output to a file (instead of the screen):
— Syntax: S cat > item (without overwriting item content: S cat >> item).

Redirection and Pipes

* Pipes: allows two or more commands to be linked, where the output
of a command is redirected to be the input of the following one:

— Example: cat < /etc/passwd | grep root | cut—d:-f7 > root_shells.

Tasswd 0 @ _ri})t_shells

e Concatenation: concatenate command in the same line:
— Example: Is—I; cd..; Is -l (also this way: Is—| && cd .. && Is).
— Nested execution: (Is —I; cd ..); Is —| Difference with previous one?

Index

* Shell Scripting.

Shell Scripting

Group shell commands to perform complex tasks in a single step.

The simplest structure: text file with a command per line, but usually
much more complex:

— Conditional sentences, loops, functions...

A script can create a sub-shell regardless of the one that executed it:

— S bash macro.

Its structure depends on the shell we are employing.
Example:

#!/bin/sh

echo “Today is:”

date

echo “have a nice day”

— First line indicates which kind of shell executes the rest of the script.

run ./script [name]

Shell Scripting S S

read surname
echo “Hola, $1 S$surname’

/4

* Execution:
— If the file does not have execution permissions: S bash script.
— Other way, modify permissions: chmod a+x script; ./script.

* Input/Output:
— Read from keyboard with command read.
— Write in screen with echo/printf:

* echo —n suppress newline.

e Command line arguments:

— Become variables whose names are numbers:
* S1-9:command line parameters, number indicates its position.
« S0: macro name(script name).
* S#: number of command line argument.
S?:SS: PID associated with the macro.
S*: string containing all the arguments passed (beginning with $1).

Shell Scripting

Control Flow:

if |
then

else

fi

who | grep -s pepe > /dev/null]

44

echo “pepe is in the system

echo “not present”

— Sequence if then else (elif):

* /bin/sh: if [<condition>] && [<condition>]; then.

* /bin/bash: if [[<condition> && <condition>]]; then.

— Bash comparison operators

String Numeric True if

X=y x—eqy xis equal toy

xl=y X—hey x not equal toy

X<y x—lty X is less thany
le, gt, ge

— Sequence case:

rental=$1

case Srental in
“car”)
“moto”)
“bus”)

echo “rent car”;;
echo
echo “rent bus”;;

esac

“rent moto”;;

... and Bash file evaluation operators:

Operator True if

-d file File exists and is a directory.

-e file File exists.

-f file File exists and is a regular file.

-r file You have read permission on file.
-s file File exists and is not empty.

-w file You have write permission on file.

for archivo in ‘ls’

Shell Scripting |~o

echo “archivo ${archivo} update”
done

* Loops:

— Sequence for:
 List of arguments: for files in fich1l.sh fich2.sh fich3.sh; do.
* Pattern matching expansion: for files in *.sh; do.

* Command outputs the list: for files in ‘Is’; do.

a=1
* Variables: b=$((2))
c=$a+S$b
— All bash variables are string valued: d=$asb
= b
» Declaration: a = pepe, Utilization: echo “Sa”. icié (EZZ:(Z) Sen

— Arithmetic with variables??: (()):

* Operationin (()) is arithmetic, otherwise only concatenated strings.

— Arrays:
* Declaration: list = (aa bb cc dd). Utilization: echo “S{listfnum]}” (begins at zero).

Shell Scripting

* Regular expressions:
— Employed to match a text string to a pattern (semi-generic pattern).
— Pattern: built through a mix of literal and special characters.

— Examples:

. ”p([a-z]+)o": . Matches any character.
— pepito / pablo /po / plo. [chars] | Matches any character from a given set.

¢ ”p(\d *)O”: 2 Matches the beginning of a line.
— pepito /pl0o/po / pablo. S Matches the end of a line.

* ”Ap(\W*)Osl \w Matches any word character ([A-Za-z0-9_]).
~ pepito / hola pepito / pasa julio. \s Matches any whitespace character (space, tab, return).

\d Matches any digit.

| Matches either element to its left or to its right.

(expr) Limits scope, group elements, capture matches.
? Allows zero or one match of the preceding element.
& Allows zero, one or many matches of preceding element.
+ Allows one or more matches of preceding element.

{n} Matches n instances of preceding element.

Index

* Process management.

Process Management

Process: sequence of instructions and data stored in memory able to

perform some specific task.

Unique ID (numerical) in the system: PID.

Three main memory segments: code/data/stack.

Process states:

User mode
execution

1

Interruption
and return

System call or
interruption

To execution

(scheduler)

Return

Supervisor mode
execution

Sleeping

Wake up

Ready for
execution

Process Management

* Processes have a hierarchy similar to the file system (tree). Root
process: init:

— Each process (excluding init) has a father process.
— The kernel (root) has absolute control of every system process.

* A process can be identified by its PID:

— Only its owner can interact with that process (UID).

* The shell is a process, dependent on the terminal:
— Foreground process: blocks shell utilization until it finishes execution:
e Sls—R/>/dev/null.
— Background process: does not block shell:
 Sls—R/>/dev/null &.

— Processes can be moved between foreground and background:
* [Ctrl+z]: foreground process stopped (suspend execution).
* bg moves process to background mode and fg moves it back to foreground.

Process Management

» /proc: pseudo file system associated with the processes:
— Employed as interface to the data structures in the kernel associated with

each process.
— Content example (one folder for each process):

[root si /tmp] 1ls /proc/

1 211 2428 2490 2600 41 7 bus execdomains kallsyms misc

1076 212 2439 2497 2603 42 741 cgroups fb kcore modules

1153 213 2440 2512 2605 4769 742 cmdline filesystems key-users mounts

1620 2318 2459 2521 2618 4772 774 cpuinfo fs kmsg mpt

1687 2329 2465 2532 2691 5 775 crypto ide kpagecount mtrr

173 2339 2468 2566 2719 5280 958 devices interrupts kpageflags net

2 2397 2470 2594 3 5282 acpi diskstats iomem loadavg pagetypeinfo

2099 2410 2483 2596 39 5387 asound dma ioports locks partitions

210 2420 2489 2598 4 6 buddyinfo driver irg meminfo sched_debug
— In each folder...:

[root si /tmp] 1ls /proc/2719

attr clear refs cpuset exe io maps mounts oom_adj root

auxv cmdline cwd fd limits mem mountstats oom score sched

cgroup coredump filter environ fdinfo loginuid mountinfo net pagemap sessionid

» fd: files opened by the process.
* maps: physical memory range associated with the process.
» stat: current process status: PID, PPID, utime, etc.

scsi

self

slabinfo

stat

swaps

sSys
sysrg-trigger
sysvipc

timer list

smaps status
stat task
statm wchan

timer stats
tty
uptime
version
vmallocinfo
vmstat
zoneinfo

Process Management

* See Appendix for detailed description.

* Process Management commands:
— Command top: process monitoring in real time.
— Command ps: reports information about active processes.
— Command kill: send signals to a process.
— Command pstree: hierarchical relations among processes.

Index

e Advanced Administration commands.

Advanced Commands

* Command sed: perform text modifications in an input file:
— Line by line analysis.
— Syntax: sed -<opts> ‘[instruction]’ [file]:

* Option —=i: in place, the file passed as argument is overwritten.
— Some useful instructions:

* i:insert line before current one.

* p: print current line in stdout.

* s:replace string in current line.

— Examples:
* sed -i ‘s/Pepe/Manolo/g’ *.txt replace pepe by manolo in every .txt file.

* sed ‘/cadena/ s/vieja/nueva/g’ file > salida only replace in lines containing the string (flag g:
perform the change in every matching).

* sed ‘2,3 p" * printlines 2 and 3 of every file.
* sed -i ‘/cadena/d’ archivo remove string from file named archivo.

Advanced Commands

e Command xargs: run the same command over a list of arguments separated by
a space (or different lines):

— Syntax: [Commands...] | xargs -<options> [command]:
* Option =i: replace string.
e Option —n: group the items.
— Example:
e Sls *.c | xargs -i gcc -c {}.
* Sps-ef | grep “pepito” | awk {print $2} | xargs renice +10.
— —i and —n may cause conflict when used together, last one “wins”:
* Sechoabcdef|xargs-n3-iecho before {} after:
— before abcdefafter.
« Sechoabcdef| xargs—i—n3 echo before {} after:

— before {} after a b c.
— before {} afterd e f.

Advanced Commands

 Awk programming language: oriented to file processing:
— Line-oriented (file is analyzed line-by-line).

— Basic format of an awk program is: pattern { action }:
* Pattern determines when to perform action.
* If pattern condition returns true, in that line action is performed.
* If pattern is left empty, action is performed in every line.

— Awk variables:
* SN: this var contains the N field of the line (default field separator: space).
* S0: variable containing the whole line.
* FS: determines a different field separator (option -F).
* NF: contains the number of fields in a line.
* NR: contains the line number.

— Examples:
e awk -F: {if(52=="") print S1”: no password!”} < /etc/passwd.
* awk {if(NR>100) print NR, SO} < fichero.

APPENDIX

File System (Commands)
Navigating through the file system

e Command pwd: display the path of the current folder.

e Command cd: command to move to a different location.
— Usually, each session starts at the home directory of the user.
— Syntax: S cd [directory]:

* The destination folder can be expressed as an absolute path (from root: cd /home/pepe/)
or as a relative path (from current folder: cd ../usr/bin).

* If no destination is specified, the command moves to the SHOME dir of the user.

e Command mkdir: create a new directory:

— Syntax: S mkdir -<options> directory:
e Option —m: establish the permissions of the created folder.

File System (Commands)

File Manipulation

e Command Is: one of the most employed. List the content of a directory
alphabetically:

— Syntax: S Is -<options> [file...]:

If executed without arguments, list files and folder of current directory.

Option —a: include hidden files (starting with .) to be listed.

Option =l: detailed view (permissions, links, owner, group, size, modification date).
Option —r: opposite order for the list.

Option =t: order the list by modification date.

Option =S: order the list according to file size.

Option =s: show the size of each file.

Option —A: list all files except “" y “..”

Option —R: list the content of every folder recursively.

Option —color = [none/auto/always]: use colors for different file types.

— Combined example: S Is —lart What does this command do?

File System (Commands)

File Manipulation

e Command cp: copy files:
— Syntax: S cp -<options> [arch_1]...[arch_n] [destination-dir]:

Option —f (forced): overwrite destination file with the same name.

Option =i (interactive): opposite to —f, ask before overwriting.

Option —p: maintain permissions, user and group.

Option —=R: copy directories recursively.

Option —a: equivalent to -pR.

Option —u: do not perform the copy if in destination folder there is a file with the same
name and it is more recently modified.

Option —v (verbose): display information about the copy process.

e Command mv: move files (not copy) and/or rename:

— Syntax: S mv -<options> [source_1]...[source n] [destination]:

If the last argument is a directory, each source file is moved to that directory.
If source and destination are files, file is renamed.

File System (Commands)

File Manipulation

e Command rm: remove files and folders:

— Syntax: S rm -<ops> [file]...:
* Warning: use with care.
* The argument [file] can be a file, a folder or a regular expression.
* Option —f (forced): without error messages, without requesting confirmation.
* Option =r (recursive): remove folder content recursively.

e Command In: links between files:
— Two types, static or symbolic.
— Syntax: S In -<ops> [src] [dst]:

* Option —d: allows superuser to perform static links to folders.
e Option =s: create a symbolic link.

— Example: S In —s /etc/passwd /home/usuario/claves.
— Running Is =l in a folder with symbolic links:

°®xrwxrwx 1 usuario usuario 11 Apr 8 13:33 cIave@tc/passt

File System (Commands)

File Manipulation

e Command whereis: find the path of a binary/source code/manual of a
command:

— Syntax: S whereis -<options> [file]...:
* Option =b: look only for the binary file.
* Option —=m: look only for the man page.
* Option =s: look only for the source code.

* Command locate: command for file searching:

— Performed through an indexed database (speed). One file with a list of
every file in the file system.

— /var/lib/mlocate/mlocate.db.
— Usually, the OS runs a command periodically to update this database.
— Syntax: S locate -<options> [pattern].

File System (Commands)

File Manipulation

e Command find: powerful command for file searching:

— Basic for administration. Allows filtering searches and running actions
on the result.

— Syntax: S find <starting_point> -<filters> -<action>.

— Filters:

—atime n: only search for files opened n days ago (+n: more than n days ago).
—mtime n: file modified n days ago (+n...).

—newer file: files modified after file.

—size n: files with n-blocks size (block = 512 bytes) (+n...).

—type c: type of file (f = text, d = directory, etc.).

—fstype type: file type *.type.

—name nam name = nam.

—perm p: with permission p.

—user usr: owner usr.

File System (Commands)

File Manipulation

e Command find (continued):

— The search filters can be combined:
» To force precedence: \(... \).
e Condition AND: —atime + 60 —mtime + 120.
* Condition OR: —atime + 7 —o —_mtime + 120.
* Condition NOT: | —=name gold.dat.

— Actions on the files found:
* Action —print: display all the files found.
* Action =lIs: display with extended format.
* Action —exec cmd\;: run a command on every file (without asking)
* Action —=xdev: only search in current file system.

— Some examples:

* Sfind /home —size +2048 \(—-mtime +30 -o -atime +120\) —exec Is {} \;
* Sfind /home —fstype f —name core —exec rm —f {} \;
* Sfind /home/pepito -name ‘*.c’ -exec mv {} /home/pepito/src \;

File Content (Commands)

e Command cat: display the content of a file in a single step:

— Not useful with large files.

e Command more: show the content progressively (paging):
— Number of paging lines same as terminal size.

e Command less: evolution of the more command:

— Interactive, with its own commands (launched through a key or a key combo):
* Space bar: advance a number of lines equal to the terminal.
* Cursors: move fw/bw line by line.
* G/g: go to the beginning/end of the text.
» /[pattern: enter a string to search in the file.
* n/N: move to the next/previous result of the work searched.
* AvPag/RePag.
g: exit the program.

File Content (Commands)

* Command Wc: count the words in a file:
— Syntax: $ wc -<opts> [file...]:
* Option —c: count bytes.
e Option =l: count lines.
* Option —=w: count words.

e Command head: display the first part of a file:
— Syntax: S head -<options> [file]:
* Option —c N: display the first N bytes.
* Option —=n N: display the first N lines (10 by default).

e Commando tail: display the last part of a file:

— Syntax: S tail -<options> [file]:
* Options —c and —n: same as head.

* Option —nf: display the last part of a file as it grows. Very useful to control log files
that grow over time.

File Content (Commands)

e Command grep: display those lines matching a pattern:
— Syntax: S grep -<opts> PATTERN ([files...]:

* Option —c: display the number of lines matching the pattern.
* Option =H: display the name of the file on every match.
* Option -r: dearch recursively inside the folders of the current directory.
— When the patterns contains special characters (space, -, etc.),
employed.

an

can be

— Regular expressions can also be used:
* Example: search for lines with words starting with a: grep a* file.

e Command tar: add the content of a whole directory tree to a single file:
— Not compressed, only packaged.
— tar: S tar -cvf fichero.tar /path/.

— untar: S tar -xvf fichero.tar.
— working with gzip (compressor): S tar -czvf fichero.tar.gz /path/.

File Content (Commands)

e Command cut: remove sections from each line of a file:

— Syntax: S cut -<opts> [files...]:
* Option —c N: select the Nth character of each line (-N: from the beginning of the line to N).
* Option =b N: select the Nth byte of each line (M-N: from byte M to N).
* Option =f N: select the Nth field. Default delimiter: TAB.

* Command sort: sort the lines of a text file:
— Syntax: S sort -<opts> [file]:
* Option —d: alphabetic order.
e Option =n: numeric order.
* Option =b: ignore blank spaces at the beginning of the line.

File Content (Commands)

 Command vi: text editor (terminal) included in every UNIX system:

— A bit difficult for beginners. With practice, much faster than any graphic editor
(in some cases it might be the only option).

— Some improved versions available, such as vim, which are more friendly.
— Command mode: exit, save, copy, search, etc.

— Edition mode: text insertion.

— From command to edition: [i], [a], [o], [O]...

— From edition to command: [Esc].

— Moving through the text:

* [h][11,[j],[k]: cursor; left, right, up, down (in vim cursors work...).
* [G]: go to the last line ([5G]: go to the 5th line).
* [0][S]: go to the beginning (zero)/end of the line.

— Entering the edition mode:
* [a][i]: append or insert.
* [o][O]:

File Content (Commands)

 Command vi (continued):
— Entering edition mode:

* [a][i]: append or insert.

* [0][O]: open above/below a line.
— Edition (managing the buffer):

* [x]: remove a character ([xx] remove a line, [4xx] remove 4 lines, [xw] remove a word).

* [d]: cut ([dd] cut a line...).

* [yl: copy ([yy]...).

* [p]: paste.

* [r]: replace.

* [u]: undo.

e [Ctrl+r]: redo.

* [.]: repeat the last command.

— Search:
* Similar to less ([/pattern], [?pattern], [n], [N]).

File Content (Commands)

 Command vi (continued):

— Replace:

* [%s/old/new/g]]: replace old string by new string throughout the whole text.
— Exit:

* [:w]: save changes, without exiting.

* [:q]: exit (fails if unsaved changes are found).

* [:q!]: forced exit, unsaved changes are lost.

* [:wq]: save and exit.

User Management (Commands)

Command whoami: displays the name of the user running the command.
Command who: displays the users logged in the system.
Command passwd: change user’s password:

— Syntax: S passwd [user]:
* If no user is specified, it makes use of the one using the command.
Command finger: shows the status of a user in a system:
— Syntax: S finger user@system:
* Shows user information, session time, inactivity time, mail, .plan file.
Command write: send text messages to the terminal of a connected user:
— Syntax: S write user [tty].
— Complementary command wall: write to all (every user connected).
— Command talk user@machine: establish complete communication (~IRC).

User Management (Commands)

Command chmod: modify permissions of a file/folder:
— Syntax: S chmod [ugo] [+-] [rwx] [file or directory]:

* Option =R: recursive.

* Example: limit the access to SHOME to every user.

e Schmod —R g-rwx, o-rwx SHOME.

* Permissions can be coded in octal/binary: chmod —R 700 SHOME.
Command chown/chgrp: modify the UID/GID of a file:

— Syntax: S chown [-R] new_user file

Command umask: modify the permissions assigned to new files by default:

— Syntax: S umask [inhibition code]:
* Establishes which bits are 0 when creating the file.

* Example: Sumask 022 -> permissions for the created files: 644 (rw-r--r--).

To run a file, execution permissions activated (x). Extensions (.exe)
NOT necessary.

