UC

UNIVERSIDAD
DE CANTARRIA

open
course
ware

Advanced Linux System Administration

Topic 3. Booting & shutting down

Pablo Abad Fidalgo
José Angel Herrero Velasco

Departamento de Ingenieria Informatica y Electrc

Este tema se publica bajo Licencia:
Creative Commons BY-NC-SA 4.0

http://creativecommons.org/licenses/by-nc-sa/4.0/

Index

* Introduction.
* Booting, Stage 1: Hardware.

* Booting, Stage 2: Bootloader:
— LILO.
— GRUB.

* Booting, Stage 1+2 (UEFI).
* Booting, Stage 3: Kernel.

* Booting, Stage 4: SysV / Systemd.
e Shutting Down.

Introduction

Booting/Shutting Down are complex procedures, but system
provides mechanisms to deal with them.

...However, this is one of the potential troubles of administration.
Goals of this Chapter:

— To understand the basic operation of both procedures.
— Being able to customize them.
— Being able to solve generic problems related to Boot process.

Bootstrapping. Where does the name come from?:

— Allusion to “Baron Minchausen”.

— Defines a process where a simple system starts up another one with higher
complexity (starting the system forms a small portion of the system itself).

Introduction

the memory and to start executing it:

— Where is the kernel before booting?

— What’s the memory content before booting?

Stage 1: Hardware

BIOS
POST

BOOT
SECTOR

Stage 2: Bootloader

LiLO
STAGE 1

BOOT
LOADER

* |tis a sequential process divided into 4 stages:

Stage 3:
Kernel

KERNEL
LOADING

GRUB
STAGE 1

=>

GRUB
STAGE 1.5

GRUB

STAGE 2 |

 The main objective of the Booting process is to load the kernel in

Stage 4: INIT
LOGIN
PROMPT
INIT
PROCESS
XDM

PROCESS

Stage 1: Hardware

Index

* Booting, Stage 1: Hardware.

Stage 1: Hardware

* First Steps:

— After pushing the Power-On
button, the Reset Vector tells the
CPU the address of the first
instruction to be executed
(FFFFFFFOh for x86).

— Such direction corresponds to an EPROM/Flash (motherboard) that stores
the code corresponding to the Firmware (memory-mapped 1/0).

* Firmware:
— Stores Hardware configuration for the system.
— Some configuration parameters with its own power supply (battery).

 Want detailed description? (hardcore...):
— http://www.drdobbs.com/parallel/booting-an-intel-architecture-system-par/232300699.

http://www.drdobbs.com/parallel/booting-an-intel-architecture-system-par/232300699

Stage 1: Hardware

RAM Modules .
(System Memory) Front Side Bus
© DDR2 i
@RAMMGdUE)<, - ChannelA [R
@ TRAMModole < :
: Northbridge ¢ . PCl Express xa16 Graphics
@TRAMModule " <, R chip (Graphics card)
@INRAMMGEUE < DDR:2
: ': Channe' B \ T)
DMl Interface
e =y
(' BIOS (Flash memory) j«——» <«——»(Power Management)

(Serial ATAports)«—»| OSouthbridge |« (" Clock Generation)
chip

(USB Ports) - « PCIBus)

Internal Speakers

Stage 1: Hardware

e Tasks to be performed:

hardware devices (CPU, RAM, Controllers, etc.).

— Configuration of previous aspects, independent of OS (Virtualization
extensions, security, etc.).

— Starting up the Operating System: in the case of BIOS, look for the OS
loader in the first block (512 bytes) [Master Boot Record (MBR)] from the
booting device in the configured order. When found, the contents are
loaded into the memory.

* Two main kinds of Firmware:

— BIOS: Basic Input Output System.

— EFI: Extensible Firmware Interface.

Stage 1: Hardware

e BIOS (Basic Input/Output System):
— 1975: first appeared in the CP/M Operating System.

— It runs in real address mode (16 bit): 1MB of addressable memory.

— 1990: “BIOS setup utility” appears: allows the user to define some
configuration options (boot priority).
— ROM customized for a particular HW. Provides a small library with 1/0

functions to work with peripherals (keyboard, screen). Very slow (protected
to real mode).

— Emerging applications require more and more BIOS support: security,
temperature/power metrics (ACPI), virtualization extensions, turbo-boost...
(hard to put all that in 1MB).

— 2002: intel develops an alternative firmware: EFI (/UEFI).

Stage 2: Bootloader

Index

LiLo
STAGE 1
BOOT
LOADER
GRUB

STAG

* Booting, Stage 2: Bootloader:
— LILO.
— GRUB.

Previous: MBR Disks & Partitions

|Master Boot Record
v Bootloader
\ Code
\
. \
Primary \
partition \
\
\
\
\
\
\
\
\ :
\‘ | Boot Signature |
Primary | e
/
partition / |Vo|ume Boot Recordl P
[—— -
ﬁ ,/' A IExtended Boot Record
o— \
/
© ,’ \ Bootloader I Volume Boot Record \
7 \ Code \
\ 1
Data \ Logical \
\ Partition %
. \ \
Primary \ \ Extended
partition \ \ ----Partition---.
\‘ IExtended Boot Recordl \\ E--:- “fable
“ I Boot Signature I I Volume Boot Record I \
———— \ | | BootSignature |
\
Logical
Partition
Extended __ || ______ >
Partition

Previous: MBR Disks & Partitions

 Master Boot Record (MBR):
— First block of the Disk, 512 Bytes.

— Partition Table: information about four primary partitions: begin and end
blocks, size, etc. (64 bytes).

— Boot Signature: numerical value indicating the presence of valid
bootloader code in the code field (0x55AA) (2 bytes).

* Volume Boot Record (VBR):

— First block of each primary partition.
— Could contain bootloader code (indicated by Boot Signature).

 Extended Partition:

— Partition that can be sub-divided into multiple logical partitions.

— Extended Boot Record (EBR): first block of each logical partition. It only
contains a partition table with two fields. Extended partition table forms a
linked list with all logical partitions.

Previous: MBR Disks & Partitions

* Linux Naming Convention:

— Remember: 1/O devices are treated as files. Under directory /dev we find
all system disks.

— Generic PC: 2 IDE controllers, each can have two devices (master/slave):
» /dev/hda: first device (master) of the first IDE controller.
» /dev/hdb: second device (slave) of the first IDE controller.
» /dev/hdc: first device of the second controller.
* /dev/hdd: second device of the second controller.

— In a disk, each primary partition is identified with a number from 1 to 4:
» /dev/hdal: first primary partition of the hda disk.

— Logical partitions start from 5:
» /dev/hdab: first logical partition of hda disk.

— In SCSI devices same naming convention, changing “hd” to “sd”:
e /dev/sdal.

Stage 2: Bootloader

Hardware requires an OS in charge of providing all the
functionality in a computer.

Target: to load the OS kernel into memory and start running it.
Loader with different locations: USB, CD, Disk...

Stage 2.1:
— Located in MBR: 512 first bytes (block 0) of the active device.
— Loaded into memory by BIOS (Stage 1).
— Triggers, when executed, the load and execution of Stage 2.2.

Stage 2.2:
— Located in the active partition, where the kernel is placed.

— Loads the kernel into memory and transfers control to it (data initialization,
drivers, check CPU, etc.).

— After this process, the init process is executed (Stage 3).

Stage 2: LILO

Linux Loader:
— Two stage Bootloader.

— Does not “understand” about operating system or about file system. Only
works with physical locations.

— Obsolete (but easy to follow for academic purposes).

Steps:

— Master boot loads LILO from the first active partition and runs it:

* LILO can be in the MBR or in the Boot Block of a primary partition. In the second case,
MBR contains the necessary code to load LILO from another block.

— LILO asks the user what kind of boot he wants (partition, kernel, mode).
Through a prompt.

— LILO loads the kernel and a ramdisk.
— The kernel starts running once it is loaded into memory.

Stage 2: LILO

* Configuration: /etc/lilo.conf:

boot=/dev/hda #o by ID
map=/boot/map
install=/boot/boot.b
prompt

timeout=50
message=/boot/message
linear

default=1linux

image=/boot/vmlinuz-2.6.2-2
label=1linux
read-only
root=/dev/hda2 #o by UUID
initrd=/boot/initrd-2.4.2-2.img

other=/dev/hdal
label=dos
optional

Device where LILO is installed (IDE/
SATA/Floppy...).

File with information about disk blocks
with the files required to boot system.

Loader Assembly code.
Kernel for booting and its options.

Linux system partition (/). Not
necessarily a disk (usb loader).

Filesystem loaded into memory as a
ramdisk. Software support not provided
by the kernel to initialize the system.

Link to other loader (boot a different OS).

Stage 2: LILO

Configuration: /etc/lilo.conf:

— Any change in the files employed in boot process (boot.b, kernel, ramdisk)
requires loader update:
* Map file must reflect those changes, otherwise booting process is corrupted.
e Check if map file is updated: # lilo -q.
e Update map file: # lilo [-v].

A booting error cannot be fixed from the shell...

Possible error sources:
— Installation of a new OS overwriting MBR (MS).

— Failed kernel compilation.
— Modification in boot files without map updating.

Rescue Systems:
— mkbootdisk.
— Installation Live CD (option rescue) or specialized (SystemRescueCD).

Stage 2: GRUB/GRUB2

 GRand Unified Bootloader: linux loader:
Bootloader with three stages.

Can work with file systems (ext2, ext3, ext4...), directly accessing partitions
(no map files).

UEFI version available (grub.efi).

Much more flexible, has its own mini-shell (grub>):

Booting parameters can be decided through that prompt. It is possible to indicate the
kernel and the ramdisk before startup (booting an OS which was not in the boot menu).

“c” from the startup window opens the console with the values for the selected input.
“e” edits each input in n-curses format.

“kernel”, “initrd” loads a kernel or a ramdisk.

“boot” boots your OS.

Access to the file system and command has auto-complete (TAB).

— Currently GRUB2 is the most commonly used bootloader.

Stage 2: GRUB/GRUB2

e GRand Unified Bootloader:

— Configuration:

* More complex scripts than LILO. Advantage: modifications in files required to boot
(kernel or initrd) are processed “automatically”.

* Everything in /etc/default/grub and /etc/grub.d/.

* Final configuration (/boot/grub) is performed through the command “update-grub”.
— Stages:

e Stage 1. Boot.img stored in MBR (or VBR), loaded into memory and executed (loads the
first sector of core.img).

» Stage 1.5. Core.img stored in the blocks between MBR and first partition (MBR gap),

loaded into memory and executed. Loads its configuration file and drivers for the file
system.

» Stage 2. Load Kernel and ramdisk, accessing directly to the file system (/boot/grub).

O)
o boot b
&; IS /boot/grub/

)
&

* sdal sda3 sda5 sda6
Empty space: NTFS extd extd
512Byte: sectors 1 to 2047 boot and home
4096Byte: sectors 1 to 255 10-20GiB as much as required

MBR |b
sector 0

Stage 2: Bootloader

* Having physical access to a system, stages 1 & 2 can become a
weakness:

— Modifying boot options we could obtain superuser privileges.

* Protect BIOS and loader with password.

 Example: protection of GRUB2 with password:

— Edit /etc/grub.d/00_header and at the end of the file add (remember to
perform update-grub after that):

cat << EOF

set superusers=“alumno"

password alumno <<<<<secuencia de grub-mkpasswd-pbkdf2>>> o <<password-plano>>
export superusers

EOF

Index =

* Booting, Stage 1+2 (UEFI).

UEFI

LOGIN
PROMPT

XDM
PROCESS

LOGIN
PROMPT

From:
LILO
STAGE 1
BIOS BOOT BOOT
POST SECTOR LOADER
GRUB GRUB GRUB
STAGE 1 STAGE 1.5 STAGE 2
UEFI
(+ grub)

KERNEL INIT
LOADING PROCESS

KERNEL INIT
LOADING PROCESS

XDM
PROCESS

UEFI

* EFI/UEFI (Unified Extensible Firmware Interface):
— 2002: itanium platform from intel provides EFI firmware.

— 2005: UEFI. Consortium of companies takes control over the firmware.
Unified EFl Forum.

— Works in 32/64 bits mode.

— Much more flexible than BIOS:

* Supports big disks (MBR: 32-bit block addresses. GPT: 64-bit block addresses):
— MBR: 512KB block: 2TB disk.

Supports more booting devices (network).

Can eliminate the need for a bootloader (no stage 2).

Improved Security (network authentication, signed start up).
* Extends bootloader operation (load the OS) to a UEFI-capable shell (interaction).

— Requires support from the OS (Linux, OSX, Windows8).
— Can emulate BIOS.
— VirtualBox supports UEFI.

Previous: GPT Disks & Partitions

A

disk

Legacy MBR

Primary GPT

Partition1

Partition 2

Partition N

Secondary
GPT

-

-—‘———
rmmmmmmmmmmmm——————]
i e i
i Partition
1]
. i Table i
AY e 1
\\\\\
\\
\\
\S
\Q‘
N
GPT Header
Entryl Entry2lEntry3IEntry4 b
Entry5
A
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ Entry128

| Signature I
I Current Block I

| Backup Block |

| Entries Start block |

| num/size entries |

[CRC32 |

| Partition Type I
I Partition GUID I

First Block

Last Block

Attributes

Partition name

Previous: GPT Disks & Partitions

* Protective/Legacy MBR:
— Backward compatibility, first block reserved.
— Prevent MBR-based disk utilities from misrecognizing/overwriting GPT disks.
— Single partition of special type (identifies a GPT disk). OS & tools which
cannot read GPT recognize the disk and typically refuse to modify it.
* Primary GPT Header:
— Defines the usable blocks on the disk.

— Also defines the partition table (number & size of the partition entries).
Minimum table: 128 entries, each 128 bytes long.
— Also contains disk UUID, CRC32 checksum, its own size and location (always

LBA 1) and the size and location of the secondary GPT header & table
(always last disk sectors).

Previous: GPT Disks & Partitions

* Partition Entries:
— 128 bytes for each entry block.

— Each partition includes the following contents: Type, unique ID, First and
last blocks, Attributes (e.g. read only) & partition name.

* Secondary GPT Header:
— Copy of the Primary GPT header, placed in last disk blocks.
— If checksum of primary header fails, secondary is employed.

UEFI

Instead of a 512 MBR and some boot code, UEFI has its own
filesystem, with files and drives (FAT32, 200-500Mb).

UEFI marks one GPT partition with the boot flag:
— But this is an EFI partition, never any of the OS partitions.
Each installed OS has its own directory in EFI partition:

— All necessary files for loading the OS are under these directories.

— In Linux, after computer boot-up the EF| partition is sometimes mounted
under the boot partition.

Taking a look at the UEFI boot process, you realize it reminds you
of a mini-OS.

UEFI

* Boot Manager:

— Firmware policy engine that can be configured by modifying architecturally
defined global NVRAM variables.

— In charge of loading UEFI
drivers and UEFI
applications (including
UEFI OS boot loaders). —
Boot order defined by the hpcaton

global NVRAM variables.
EFI Image
Init Load

Standard Drivers and Boot from Operation
firmware applications ordered list handed off
platform loaded of EFIOS to OS loader
initialization iteratively loaders

“" OS Loader

EFI API

—>» API specified ----» Value add implementation
Boot Manager . EFI binaries

Index .

* Booting, Stage 3: Kernel.

Stage 3: Loading the Kernel

 The bootloader has loaded kernel & ramdisk files into memory:
— vmlinuz-2.6.26-2-686.
— initrd.img-2.6.26-2-686.

* Once Stage 2 is complete, kernel execution starts:
— The Kernel uncompresses itself.
— Detects memory map, the CPU and its features supported.
— Starts the display (console) to show information through the screen.
— Checks the PCl bus, creating a table with the peripheral detected.

— Initializes the system in charge of virtual memory management, including
swappetr.

— Initializes the drivers for the peripherals detected (Monolithic or modular).
— Mount file system root (“/”).
— Calls the init process (Stage 4): PID 1, father of the rest of processes.

Stage 4: INIT

Index .

LOGIN
PROMPT
INIT
> 2 » ol e
XDM
PROCESS

* Booting, Stage 4: SysV.

Stage 4: INIT (SysV)

* The init process performs the following tasks:

— Step 1. Configuration: read from the file /etc/inittab the initial configuration
of the system: Operation mode, runlevels, consoles,...

— Step 2. Initialization: runs the command /etc/init.d/rc.S (debian), which
performs a basic initialization of the system.

— Step 3. Services: according to the runlevel configured, runs the scripts/
services pre-established for that runlevel.
* Runlevels (Operation modes):
— Standard: 7 levels. Each distribution has its own configuration (here Debian).
— Level S. Only executed at boot time (replaces /etc/rc.boot).
— Level 0. Halt: employed to Shut down the system.
— Level 1. Single User: maintenance tasks (no active network).
— Level 2-5. Multiuser: all the network and Graphical services activated.
— Level 6. Reboot: similar to level 0.

Stage 4: INIT (SysV)

* Step 1. Configuration. The file /etc/inittab:

/etc/inittab: init(8) configuration.

The default runlevel.
id:2:initdefault:

Boot-time system configuration/initialization

script. This is run first except when booting in
emergency (-b) mode.

si::sysinit:/etc/init.d/rcS

What to do in single-user mode.
~~:S:wait:/sbin/sulogin

/etc/init.d executes S and K scripts upon change
of runlevel.

10:0:wait:/etc/init.d/rc O
1ll:1:wait:/etc/init.d/rc 1
12:2:wait:/etc/init.d/rc 2
13:3:wait:/etc/init.d/rc 3
14:4:wait:/etc/init.d/rc 4
15:5:wait:/etc/init.d/rc 5
16:6:wait:/etc/init.d/rc 6

Normally not reached, but fallthrough in case of
emergency.
z6:6:respawn:/sbin/sulogin

What to do when CTRL-ALT-DEL is pressed.
ca:12345:ctrlaltdel:/sbin/shutdown -tl -a -r now

Note that on most Debian systems tty7 is used by
the X Window System, so if you want to add more
getty's go ahead but skip tty7 if you run X.
:2345:respawn:/sbin/getty 38400 ttyl
:23:respawn:/sbin/getty 38400 tty2
:23:respawn:/sbin/getty 38400 tty3
:23:respawn:/sbin/getty 38400 tty4
:23:respawn:/sbin/getty 38400 tty5
:23:respawn:/sbin/getty 38400 tty6

o U1 d W INBRL H= H HH

Stage 4: INIT (SysV)

* Step 1. Configuration. The file /etc/inittab:

— Line format: id:runlevels:action:process.
— id: identifier for the entry inside inittab.
— Runlevels: execution levels for that entry (empty means all).

— Action: what must init do with the process:
e Wait: wait until it finishes.
» Off: ignore the entry (deactivated).
* Once: run only once.
* Respawn: rerun the process if it dies.
* Sysinit: ask the user what to do with that entry.
* Special: ctrlaltdel.

— Process: sh line tells init which process to start when this entry is reached.

Stage 4: INIT (SysV)

» Step 2. Initialization. The file /etc/init.d/rc:
— Input parameters: the runlevel. Example rc 2: multiuser.

— Tasks:

Establishes PATHs.

Loads swap space: swapon.

Checks and mounts local filesystems (/ets/fstab).

Activates and configures the network.

Removes unnecessary files (/tmp).

Configures the kernel. Loads modules: drivers (managing dependencies).
Triggers the startup of the services associated with the runlevel.

— Modifying the runlevel: command init, telinit:

Allows changing from one runlevel to another.

* Single User?

» Restores original state.

Stage 4: INIT (SysV)

* Step 3. Services. The directories /etc/init.d and /etc/rcN.d:

— All the services available are found in /etc/init.d:
e Examples: cron, ssh, Ipd...

— How do we tell each runlevel which services to start?:

* With a special directory, /etc/rcN.d/ (being N the runlevel).
* In these directories a list of links to the services is found.

— The directory /etc/rcN.d/:

The links begin with letters “S” or “K” plus two digits (execution order).
“S”: executed in ascending order when a runlevel is started (ssh start).

“K”: executed in descending order when shutting down (ssh stop).
These links are controlled with “update-rc.d”.

— S99local: script to perform local configurations:

* Minor booting aspects: auxiliary kernel modules, personalized services...
* Employed by the administrator.

* |t really runs the script /etc/rc.local.

Stage 4: INIT (SysV)

* Step 3. Services. The directories /etc/init.d and /etc/rcN.d:

— The directory /etc/rcN.d/.

pablo@si:/etc/rc2.d$ Is

README S03cgroupfs-mount S03vboxdrv
S01bootlogs S03cron S04avahi-daemon
S01rsyslog S03dbus S04docker
S02apache2 S03exim4 S04lightdm

pablo@si:/etc/rc6.d$ Is
KO01alsa-utils K01network-manager K02avahi-daemon
KO01apache2 K01plymouth K02vboxdrv

S05cups
S05cups-browsed
S05saned
S06plymouth

K06rpcbind
K07hwclock.sh

Stage 4: INIT (SysV)

* Manual administration of services:

— After booting process, services can be modified (stop running services or
start new services).

— Directly through its script (example ssh):
» # /etc/init.d/ssh [stop/start/restart/status].

— Or through the command service:
» Service --status-all: reads /etc/init.d/ verifying service state [+] [-] [?].
— These changes are volatile (lost after reboot):

* Permanent with update.rc-d.

— Checking possible errors concerning boot process:
* #tail -f /var/log/messages (Other important files: syslog, daemon.log).
* #Is-lart /var/log.

Stage 4: INIT (SysV)

 Manual administration of services:
— Examples of start script and services command:

#!/bin/sh
#SIMPLIFICADO

[-£ /usr/local/sbin/sshd2] || exit 0

PORT=

if ["X$PORT" = "X"]
then

PORT=22
fi

See how we were called.
case "$1" in
start) # Start daemons.
echo -n "Starting sshd2 in port $PORT: "
/usr/local/sbin/sshd2

PORT="grep Port /etc/ssh2/sshd2_config | awk '{ x = $2 } END {print x}' -°

= ade@dappers=

(==

File Edit \View Terminal Tabs Help

echo "done."
stop) é;stop . SysV Runlevel Config -: stop service =/+: start service h: help q: quit
echo -n "Shutting down sshd2 in port $PORT: "
kill ‘cat /var/run/sshd2_$PORT.pid’ service 1 2 3 4) 0 6 S
echo "done." e e e e e e e e e e e e
i acpi-supps [[x] [x] [x] [x] [] [] [1
TR e acpid AT 'S IR 'S BN '3 I ¢'3 I 5 N A B A
$0 start alsa-utils [] [1] [] [] [] [] [] [1]
" 38 anacron [1] [x] [x] [x] [x] [] [] []
echo "Usage: sshd2 {start|stop|restart}" :ggd E % Ei% Ei% Ei% Ei% E % { % E %
exit 1
ErE bittorrent [] [1] [] [] (1] (1] (1] []
bluez-utig [] [x] [x] [x] [x] [] [] (1]
exit 0
Use the arrow keys or mouse to move around. ~n: next pg ~p: prev pg
space: toggle service on / off

Stage 4: INIT

Index .

LOGIN
PROMPT
INIT
> 2 » ol e
XDM
PROCESS

* Booting, Stage 4: Systemd.

Stage 4: Systemd

e SysV is not the only available init system:
— BSD init, ubuntu’s Upstart, systemd.

 What are systemd benefits?:
— Faster Startup:

e Sysvinit is slow: it starts processes one at a time, performs dependency checks on each
one, and waits for daemons to start so more daemons can.

* Daemons don't need to know if the daemons they depend on are actually running (only
need the inter-process communication sockets to be available).

» Step 1. Create all sockets for all daemons. Step 2: start all daemons.
* Client requests for daemons not yet running buffered in the socket, filled when the
daemons are up and running.
— Hotplugging and On-Demand Services:
e After startup sysvinit goes to sleep and doesn't do any more.

» Systemd (making use of D-Bus) can expand init duties, working as a full-time Linux
process babysitter.

Stage 4: Systemd

» Systemd Unit: any resource that system can operate/manage:

— This is the primary object that the systemd tools know how to deal with.

* Available Systemd unit types:
— .service: a system service.
— .target: a group of systemd units.
— .automount: a file system automount point.
— .device: a device file recognized by the kernel.
— .mount: a file system mount point.
— .path: a file or directory in a file system.
— .socket: an inter-process communication socket.
— .Sswap: a swap device or a swap file.
— .timer: a systemd timer.

Stage 4: Systemd

* Location of the Unit files:
— Jusr/lib/systemd/system/, /run/systemd/system/, /etc/systemd/system/.

e General Characteristics of Unit files:
— Internal structure organized with sections, denoted as: [section_name].

— At each section, behavior is defined through key-value directives (one per
line).

[Unit]
Description=Simple firewall

[Service]

Type=oneshot

RemainAfterExit=yes
ExecStart=/usr/local/sbin/simple-firewall-start
ExecStop=/usr/local/sbin/simple-firewall-stop

[Install]
WantedBy=multi-user.target

Stage 4: Systemd

e Systemd boot process:

— Configure grub?2 for systemd:
* GRUB_CMDLINE_LINUX="init=/lib/systemd/systemd” (run update-grub afterwards).

— Systemd handles boot & service management using Targets:
* Target: special unit employed to group boot units and start up synchronization processes.

— First target executed: default.target:
* Usually a symbolic link to graphical.target.

— Target Unit File main options:
* Requires: hard dependencies. Must start before your own service.

* Wants: soft dependencies (not required to start). Can be replaced by a directory, named
foo.target.wants.

» After: boots after these services.
— Runlevels: Specific Target units. [Unit]
Description=foo boot target
Requires=multi-user.target
Wants=foobar.service
After=multi-user.target rescue.service rescue.target

Stage 4: Systemd

emergency.target

' -------------- T ______________
v A 4 v
display- . multi-user.target i
pay- system services for & eémergency.service
manager.service .

- graphical interface v

I .

I H various system

: 1 services

1 I

[1 ¥

timers.target

paths.target

basic.target

sockets.target

various timers

various paths

various sockets

local-fs.target

swap.target

various mounts
and fsck services

various swap
devices

sysinit.target

cryptsetup.target

rescue.target

rescue.service

various low-level
services: udey,
tmpfiles, random
seed, sysctl

various low-level

APl VFS mounts:

mqueue, configfs,
debugfs

Stage 4: Systemd

e Service administration through the systemctl command:
— Table: comparison of the service utility with systemctl.

service (sysV) systemctl (systemd) Description
service name start | systemctl start name.service Starts a service
service name stop systemctl stop name.service Stops a service

service name restart systemctl restart name.service Restarts a service

service name status | systemctl status name .service Checks if a service is running

service —status-all systemctl list-units —type service | Displays the status of all services

e System & Boot performance statistics through systemd-analyze
command:

— Alternatives for SysV: Bootchart.

Index

e Shutting Down.

Shutting Down

* Never shut down directly (reset!):

— If this rule is not followed, there is a high probability of losing or corrupting
system files (with a bit of bad luck, fully broken system).

— Intermediate Buffers for disk read/write. Synchronization.

* Never shut down without warning all system users:

— Periodically programmed shut-downs.

» Steps for a correct shut down:
— Warn all users beforehand.
— Stop all services associated with (/etc/rcN.d/Kxxservice stop).
— Send the specific signal to all the processes to end their execution.
— Users and processes still present, killed.
— Subsystems shut down sequentially.
— File System unmounted (synchronizes pending changes with disk).

Shutting Down

e Command shutdown:

— Format: /sbin/shutdown -<options> time message:
e Option —-r: reboot instead power off.
* Option =h: stop the system(with ACPI).

— Message: message sent to all users.
— Time: delay to begin the shutdown (mandatory):

* Format: hh:mm.
* Supports now+,minutes.

* /etc/shutdown.allow or inittab:
— Avoid Ctrl+Alt+Del.

e Other commands: /sbin/halt, /sbin/poweroff.

