UC

UNIVERSIDAD
DE CANTARRIA

open
course
ware

Advanced Linux System Administration

Topic 6. File systems fundamentals

Pablo Abad Fidalgo
José Angel Herrero Velasco

Departamento de Ingenieria Informatica y Electrc

Este tema se publica bajo Licencia:
Creative Commons BY-NC-SA 4.0

http://creativecommons.org/licenses/by-nc-sa/4.0/

Index (Getting started)

Introduction:
— Devices.
— Basic aspects about File Systems.
— Partitions, Mount/Umount.

FAT File System.
EXT File System:

— I-nodes and blocks.

— Block groups (ext2).
— Journaling (ext3).
— Extents and B-Trees (ext4).

Virtual File System.

Administration.

Introduction

* Previous concept: Device:

— Name assigned to an I/O device, physical (disk, tape, sound card...) or
logic (terminal, network port...).

— Deuvice file: file for app-HW interactions (through the kernel):

* Consistent way to access different devices (same group of commands):
— Scat /dev/dsp > my_recording [talk] Scat my_recording > /dev/dsp.
— cat /dev/input/mouse0.
» Every device file can be located in directory /dev:
— Standard devices [stdin, stdout, stderr] and Memory: [mem] (and virtual memory: kmem).
— Specials: [null] (garbage), [zero] (zero generator), [random] (random number generator)...
— Virtual terminals [ttyX] , Parallel and serial ports [IpX, ttySX], Optical devices [cdrom].
— IDE devices [hdXX], USB/SCSI/SATA devices [sdXX], RAID devices [mdX] (or mapper/XXXX).

— Device driver: kernel routines which define how to perform
communication between kernel and HW (Interruptions, DMA...).

Introduction

 Disk Partition:

— Logical storage unit which allows treating a single physical device as
multiple ones, allowing a different File system on each partition.

— High utility for administration tasks:

* Protects directories that tend to grow indefinitely:
— /var/spool against “mailbombing”.

— /tmp against careless users/apps.

* Divides software and users:

— Easier upgrading, avoid users blocking the system.

— In recent kernels, the system creates alias for each partition:
* Can be employed whenever needed (Loader configuration, mounting, etc.).
* In /dev/disk/{disk-by-uuiid}, links to the corresponding /dev/sdXX.

* Persistent device naming: avoids changes in device naming at each boot.

Introduction

* Disk Partition, mount/umount:

— Mounting process provides access to the content of a disk from the file
system (making use of device file).

— Can be done for any storage device (USB, CDROM, tape...).
— At least one partition (system) is mounted during booting process.

— Command mount: mount a file system:

* Syntax: mount -<options> [file-dev] [mnt-point]:
— Option —r: mounting in read-only mode.
— Option —t: kind of file system mounted.

— Example: mount -t ext3 /dev/hdcl /home/.

— Umount process disconnects the device from the rest of the system.

— Command umount (syntax: umount [mnt-point]):

* Doing this requires that no process is making use of the file system to umount.

* Command fuser shows the processes making use of it.

/etc/fstab: static file system information.

#

#<file sys> <mount point> <type> <options> <dump>
o <pass>
I nt ro u cu o n proc /proc proc defaults 0
/dev/sdal / ext3 errors=remount-ro 0
/dev/sdab5 none swap sw 0
/dev/hdc /media/cdrom0 udf, 1is09660 user,noauto 0
/dev/£d0 /media/floppy0 auto rw,user,noauto 0

Automatic mount/umount:

— Systems to mount/umount are read from file fetc/fstab.

— Done automatically during boot process (can also be performed at a
different moment with command “mount —a”).

— File /etc/fstab:

<file sys>: device file.
<mount point>: mount point (directory).
<type>: type of file system (ext3, ext4, vfat, xfs...).

<options>: read or read/write mode (ro/rw), SUID/SGID support (suid/nosuid), allow
user mounting (user/nouser), allow binary execution (exec/noexec)...

<dump>: dump frequency (backup utility, obsolete).

<pass>: order to run fsck on the device. Run at boot time if an illegal umount is
performed for that device (power button).

S @ @ [N e)

Introduction

Example: File system in multiple partitions/disks.

1
bin
dev
/
etc
swap
tm
IDE 0:0 IDE 0:1
/dev/hdal /dev/hdbl

/dev/hda2

IDE 1:0
/dev/hdc1

local

IDE 1:1
/dev/hdd1

Introduction

* The File System:

— What are the main requirements for a file system?:
* Labeled files (with name).
 File organization as a linked hierarchy (tree-like) of directories.

* Meta-data for every file (generation time, permission, etc.).

— How is this implemented? (File Storage):

* Disk performs sequential storage (blocks), does not know about hierarchies.

Introduction

* File storage:

— A file has two main components:

* Data: one or more disk blocks with binary information.

* Metadata: name, size, permission, directory, block mapping...

— Any file is stored in at least 1 disk block:

* How can | map files in multiple blocks?

List of blocks

E [1] [4, 5,7, 8] [6]

&

Start-length pair

(1, 1)

B (4 4) (9 1)

2

— FAT, EXT1 EXT2 and EXT3 employ list of blocks, EXT4 start-length pair.

Introduction

e Where is FS info stored?:

A

Disk

Master Boot Record

Primary
Partition

Primary
Partition

Primary
Partition

\
\

=

Bootloader
eCode

]

Volume Boot Record

Superblock

FS Structure

——————

Data
&
Directory
Blocks

Partition

Extended .

Superblock:

Keeps information about file system (version, boot file
location, number of blocks, first block of / directory...).

Read during file system mounting.

FS Structure:

Mapping structure of files/directories into blocks
(different for each file system).

——

- -

Extended Boot Recor

| Volume Boot Record \

Logic 1
Partition ‘\

\ Extended
\ [
R i
\
‘

Logic
Partition

Index (Getting started)

* FAT File System.

FAT File System

e FAT: File Allocation Tables:
— File system created in 1977 and popularized thanks to MS-DOS.
— Still popular today (FAT32): USB, mem cards, EFI boot partition.

— File Allocation Table: Linked list structure that holds information about
the blocks occupied by each file.

— It also determines whether a block is in use or not.

FAT Table Data Blocks

2 3 4 5 6 7 8
g Super

i 99088 £
W FAT table values:
[0]: empty disk block.

[1]: reserved by the O.S.
[1<N<OXFFFF]: next block in the list.
[OXFFFF]: end of the list.

OXFFFF
OXFFFF

FAT File System

e Directories:

— Treated as special files.

— Itis a file containing a list with the elements in the directory.

Index of the /
directory

. Super
Disk i

Block

OXFFFF
OXFFFF
OXFFFF

Name Index | Dir? | Perm
2 Y rwx
Windows 3 Y rwx
Users 4 Y rwx
pfile.sys 6 N r
2 3 4
™ :
Ll C\ VVE;T Usr
o &

—)

—

j Windows
—)

C:\ -

Users

pfile.sys

FAT File System

Problems/Limitations:
— Upper limit, FAT32 supports a maximum disk size of 2TB.
— Locating free blocks requires scanning the whole FAT table.

— Prone to file fragmentation (poor locality in blocks from the same file).
Metadata fragmentation -> very expensive searches.

— Linked lists are not efficient in the presence of small files (a 4-block file
requires 4 readings of the FAT).

What is the common case, small or big files?:

— Seems to be small ones: 2KB is the most common size, 200KB the
average size.

* Make use of more efficient structures: i-nodes (index node):

— Employed in the Linux file system.

Index (Getting started)

* EXT File System:
— I-nodes and blocks.
— Block groups (ext2).
— Journaling (ext3).
— Extents and B-Trees (ext4).

EXT File System

 Thei-nodes:
— Basic building element of the file system.
— Each file (or directory) has at least one i-node associated.

— By default, they consume 10% of disk storage (can be configured at FS
creation time).

EXT File System

e The i-nodes:

i-nodo

indirect block: 1024 ptrs

Metadata

mode, uid, size,
blocks...

—

12 direct pointers:
12 Bloques * 4KB = 48KB

™~

1 single indirect pointer:
1024 Bloques * 4KB = 4MB

1 double indirect pointer:
1024 * 1024Bloques + 4KB = 4GB

s S~

WANRN

'

1 triple _indirect pointer:
230 Bloques + 4KB = 4TB

EXT File System @

e EXT File System structure:

— |-node bitmap: bit map of occupied/free i-nodes.
— Block bitmap: bit map of occupied/free blocks.

— I-node table: each input is a single i-node.

I-node Block I-node Data

bitmap bitmap table /_/\\‘ blocks
Super m - [h—oa gl gl gl
Block

EXT File System (ext2)

* Problems/Limitations of EXT:

— Less fragmentation of metadata, but data fragmentation still present.

— I-nodes and their associated data can be far away in the disk.

e ext2 improves data-metadata locality:

— Disk is divided into block groups (group size usually depends on disk
physical properties: cylinder size).

— Each group replicates FS structures: inode/data bitmap, inode table.

EXT File System (ext3)

* Consistency of the file system:

— Some operations require multiple and independent write operations in
the file system.

— Example: add a block to an existing file (size increase).

I-node Bmap Data Bmap I-node Table Data Blocks
I
‘H‘|‘ | 1
Update Data Update I-node Write New Block
Bitmap

o

* Operations performed in random order:

— What happens if the process is interrupted at an intermediate point?

EXT File System (ext3)

* Consistency of the file system:

I-node Bmap Data Bmap I-node Table

Data Blocks

I-node Bmap Data Bmap I-node Table Data Blocks
_H_l_ [1] M7
HE
o)
I-node Bmap Data Bmap I-node Table Data Blocks
H ‘ | | |
I U/' Dl
7/._\}

LSS

EXT File System (ext3)

* Consistency of the file system:

I-node Bmap Data Bmap I-node Table Data Blocks
Result: consistent file system, but D2 data lost.

I-node Bmap Data Bmap I-node Table Data Blocks

I-node Bmap Data Bmap I-node Table Data Blocks
H|_ 1]
IU/' 1
P Hil - A

EXT File System (ext3)

* Consistency of the file system:

I-node Bmap Data Bmap I-node Table Data Blocks

AT e

Result: consistent file system, but D2 data lost. Data Write OK.

I-node Bmap Data Bmap I-node Table Data Blocks

T

I-node update OK. : .
b Result: i-node points to useless data, inconsistent FS (Data bitmap vs inode).

I-node Bmap Data Bmap I-node Table Data Blocks

B e

Data Bmap update OK.

EXT File System (ext3)

* Consistency of the file system:

I-node Bmap Data Bmap I-node Table Data Blocks

BT e

Data Write OK.

Result: consistent file system, but D2 data lost.

I-node Bmap Data Bmap I-node Table Data Blocks

T

I-node update OK. : .
b Result: i-node points to useless data, inconsistent FS (Data bitmap vs inode).

I-node Bmap Data Bmap I-node Table Data Blocks

BT "B

Data Bmap update OK.

Result: storage leak. Inconsistent FS (Data bitmap vs inode).

EXT File System (ext3)

* Journaling:

— Atomic pre-writing (at the same time) disk data.

— Disk writes are pre-annotated in a log. Each input: journal.
T™XBID=1 | Iv2 [SBN2" D, TXE ID=1

— What happens if log write is interrupted?:

* Transaction is not completed (data lost) but the FS remains consistent.

Journal

— What happens if journal is written correctly, but disk not?:
* Temporarily, file system misses consistency.

* The log has the information to restore it (during boot, unfinished journals are
completed).

— How do we improve performance?:
» Buffering sequential writes in memory, grouping them as a single log.

* Performing journaling only to Metadata (Data Bitmap + I-node).

EXT File System (ext4)

 Pointers vs Extents:

— Inode pointers are not efficient for big files:
* Example: a 100MB file requires 25600 pointers.
e Cannot be avoided if no contiguous blocks, but what happens in the presence of
locality?
— Current file systems try to minimize data fragmentation:
* Less searches, better performance.
* Extents behave better in the case of files with adjacent blocks.

I-node I-node Each extent
N includes a pointer

to a block and a

block 1 block

block 2 length 1
block 3 block 2
block 4 length 2
block 5 block 3
block 6 length 3

length value.

* Btrees:

— Improved directory encoding to speed up file search.

Index (Getting started)

* Virtual File System.

Virtual File System

* Problem:
— The OS can mount multiple partitions with different file systems.

— Does a process need to use different APIs for each FS?
* Linux makes use of an interface known as Virtual File System (VFS):
— Exposes a POSIX API to the processes.

Virtual File System Interface

— Re-sends requests to
the specific driver of
the underlying file
system.

Index (Getting started)

e Administration.

Administration

* Tasks of system administrator on the file system:
— Guarantee user access to local and remote File Systems.
— Supervision and management of storage capacity.

— Protect information against corruption, hw failures and user errors
through periodic backups.

— Guarantee data confidentiality.
— Check File systems and repair possible corruptions.

— Connect and configure new disks.

Administration

* Adding a new disk:

— Command fdisk: manipulation of the partition table:
» Syntax: fdisk /dev/sda (Includes a descriptive menu of the available operations [m]).

* Think carefully about what you are doing ([q] exit without saving changes).
e [v]: look at the content of a unpartitioned disk.
* [n]: new partition.

e [w]: write the new partition table (Prior revision with [p]).
— BIOS limitations for a PC: only 4 primary partitions (the rest extended).
* Formatting the new disk:

— File systems supported by the kernel: /proc/filesystems:
* Most recommended in linux is: ext3/ext4.

— Command mkfs: builds a file system in a partition:
» Syntax: mkfs [-V —t fs-tipo] /dev/sda3.

Administration

* Checking the file system:

— Command fsck: detection and correction (some cases) of corruption
problems in the FS:
* Compares the list of free blocks with the directions stored in the i-nodes.
* |t also verifies the list of free i-nodes in contrast to the i-nodes in directory inputs.
* Important limitations against file corruption.
e Should be performed without mounting the file system.

* Periodically it is performed during the boot process.

— Command badblocks: detect and exclude broken disk sectors:

* Physical error, replace the disk immediately.

— S.M.AR.T.:

 Utilities to access reliability/usage information about the disk (requires firmware
support).

e Smartmontools.

Administration

e Resizing the file system:

— Command resize2fs:
e Supports ext4 and requires kernel >= 2.6.

* Adjacent partitions must allow it.

* First make room with fdisk, then resize (increase) with resize2fs.

* Itis also useful to reduce the file system size:
— Combined with fdisk we can do anything: break, increase, etc.
— Before working with partition table, make a backup dd if=/dev/sda of=part.bkp count=1 bs=1.

* Dangerous.

— Command parted: manipulation of partition table and FS:
» Syntax: parted /dev/sdX.
* Can copy, move, change file systems, very powerful.

* Dangerous if commands are not executed correctly!!

Administration

* Modify file system parameters:

— Command tune2fs: adjust configurable parameters of the FS:
* [-e] policy in the presence of error.

* [-j] add journaling.

e Other tools: dd:

— Images of the file system:
* ddif=/dev/sdal | gzip > imagen_disco.gz.
» gzip —dc imagen_disco.gz | dd of=/dev/sda2.
— Copy of the file system:
* ddif=/dev/sdal of=/dev/sda2.
— Backup of the partition table:
* dd if=/dev/sdal of=backup_part count=512 bs=1.

