UC

UNIVERSIDAD
DE CANTARRIA

open
course
ware

Advanced Linux System Administration

Topic 7. File systems, advanced management

Pablo Abad Fidalgo
José Angel Herrero Velasco

Departamento de Ingenieria Informatica y Electrc

Este tema se publica bajo Licencia:
Creative Commons BY-NC-SA 4.0

http://creativecommons.org/licenses/by-nc-sa/4.0/

Index

* Logical Volume Manager (LVM).

 Redundant Array of Inexpensive Disks (RAID).

e Backup.

Logical Volume Manager (LVM)

* My File System has a size of 4GB, but | only have 2GB Disks. Is
there any solution?

R ~

‘ IDE 0:0
= | 2GB
| |
IDE 0:1
| 2GB
~~~~~
IDE 1:0
2GB



Logical Volume Manager (LVM)

* My File System has a size of 4GB, but | only have 2GB Disks. Is
there any solution?

__________
R ~

______ (5] IDE 0:0

O | 2GB

- B

______________ >
IDE 1:0
2GB
IDE 1:1

2GB




Logical Volume Manager (LVM)

* My File System has a size of 4GB, but | only have 2GB Disks. Is

there any solution? T
o :"‘\{ v
5* ______ IDE 0:0
I |
2GB
/2
___________________ >
. o [NT-
* LVM: creates an abstraction £ IDE 1:0
. S 2GB
layer over the physical storage, =
allowing the creation of logical S
_ _ o IDE 1:1
volumes(“hide” the underlying 5 2GB
~_

HW, exposing a single Volume
to the SW).



Logical Volume Manager (LVM)

LVM Advantages:

— Flexible management of disk storage: avoids the limitations imposed
by disk physical size. A File System can be extended through multiple
disks.

— Re-sizeable Storage: logical volumes can be extended/reduced in a
simple way. Some operations do not require File System umounting.

— On-line Data movement: data con be moved between disks while
these disks are in use. A disk can be replaced without interrupting
system service.

— Taking “Snapshots”: eases the process of taking snapshots of devices
(backup).



Logical Volume Manager (LVM)

Physical Volumes
Group Volume

* LVM Hierarchy: Hevfsis —
- VGDA N oo <
— Physical Volumes (PV): e | R | SO
ysical I
* Lowest level of LVM hierarchy. content
e Complete disk or partition. /dev/sdb o [3
 Contains VGDA (Volume Group Descriptor = "?;’A_ = '§°§
. aw Physica =
Area) and the raw physical content. content )
_ : VGDA )
Group Volumes (VG): = - =
* Equivalent to “super-disks”. content 4 | |ipgEHT
.
* Built with one or more PVs: faev/sac
VGDA
— More PVs can be added to the GV without modifying _ = aEJ B
the previous ones. Raw Physical & 5
content 9 S
— Logical Volumes (LV):

* Equivalent to “super-partitions”.

* File Systems are created on a Logical Volume.



Logical Volume Manager (LVM)

e LVM Administration:

— Command pvcreate: creation of a Physical Volume:

* Syntax: pvcreate [partition] (It is necessary to previously create a partition with fdisk).

— Command vgcreate: creation of a Group Volume from multiple PVs:
* Syntax: vgcreate [name-vol] [PVs]:
— Example: vgcreate vg01 /dev/sdb /dev/sdcl (group disk sdb and partition sdcl in a GV in /dev/vg01).
— Command lvcreate: creation of a Logical Volume:
» Syntax: Ilvcreate [GV] —L[size] —n[name-vl]:

— Example: Ivcreate vg01 —L1000M —nvoll (after this we can create the FS with mkfs).

— Need more storage?:

e Add a new Physical Volume to the Group Volume (vgextend).
* Extend the Logical Volume to the larger Group Volume (lvextend).

* Re-size the File System (resize2fs):

— Can do this online !!! (...In contrast, reductions must be done offline).

* We can also reduce VG and LV (vgreduce, Ilvreduce).



Index

 Redundant Array of Inexpensive Disks (RAID).



RAID (Redundant Array of Inexpensive Disks)

 Mechanism to provide reliability and performance in disks:

— Make use of multiple disks to create the illusion of a disk with larger
capacity, faster access and fault tolerance.

— Transparent to the user and the OS.

— Different configuration options (Reliability vs Performance vs Capacity)
denoted as levels (standard) [RAIDO ... RAID6].

— Can be implemented via HW or SW:
 HW Implementation: high efficiency but also high cost:

— RAID Controller: CPU + dedicated sw, RAM + non-volotile memory.

* SW Implementation: efficient management of simplest RAID configs (0,1).



RAID (Redundant Array of Inexpensive Disks)

* RAID O (striping):
— Data are divided into segments (strips) and distributed among multiple disks:

e Parallel access to disks.

— Performance: improves read/write latency:

* Speed increases as the number of disks grows (also depends on data size).

— Reliability: no fault tolerance:
— Capacity: 100% storage utilized (no redundancy).

RAIDO (M diSkS)Z Twrite = (Tblock ’ Nblocks) / Mdiscks

Controller Controller
Data Data
block O block O
block 1 block 1
block 2 block 2
block 3 block 3
block O block 0 block 1 block 2 block 3
block 1
1 Disk: block 2
block 3

Twrite = Tblock ’ Nblocks



RAID (Redundant Array of Inexpensive Disks)

 RAID 1 (mirroring):
— Employ a secondary disk to copy all data being modified.

— Performance: low performance caused by writes (everything
replicated).

— Reliability: high redundancy, one disk can fail.
— Capacity: 50% of total capacity available.

RAID 1 RAIDO+1 RAID1+0
Contr. Contr. Contr.
A A ‘AO"AI"AO"Al’ ‘AO"AO’ Al Al
u n ‘ BO ’ ‘ B1 ’ BO B1 BO BO B1 “
‘ co ’ ‘ c1 ’ co c1 co co




RAID (Redundant Array of Inexpensive Disks)

* RAID 4 (striping + parity):
— One disk stores information about the parity of the rest.
— Block-level division (1 strip = 1 block). Can access disks individually.
— Performance: high performance for reads. Bottleneck for writes.
— Reliability: tolerance to 1 faulty disk.

PA = AO xor Al xor A2

— Capacity: only 1 disk is not available. If disk 2 fails:

A2 = AO xor Al xor PA
Contr.

— 3

A0 Al A2 “

(o  ——  — [ ——

BO B1 B2 “

o — o —  — [ ——

How is the new parity calculated after a write event? 0 &l ]

(Example: write in block B1):
Option 1: read the rest of blocks (BO, B2) and recalculate.
Option 2: read the content of B1 and PB and calculate: PB_,, = PB4 xor B1_,,, xor B1



RAID (Redundant Array of Inexpensive Disks)

* Write problem in RAID 4:

— Need to write in positions 0, 5, 7.

Contr.

Write process:
1. Read the blocks O, 5, 7 and PA, PB, PC.

[ i , = 2. Calculate the new value of PA, PB, PC.
ppu— — — 3. Write new data blocks.
3 4 5 PB
=llli=a! (e Write new parity blocks.
6 : 7 8 PC

Serialized (writes in the same disk) -> Low performance.




RAID (Redundant Array of Inexpensive Disks)

* RAID 5 (striping + distributed parity):

— Parity information is distributed among all the disks.

— Similarly to RAID 4, block-level division (1 strip = 1 block).

— Performance: eliminates the writes bottleneck.

— Reliability: tolerates 1 faulty disk. | contr. | |

— Capacity: only 1 disk lost.
e RAID 6 (striping + double parity):
— RAID 4 + double parity distribution.

— Tolerates two faulty disks.

 RAID 2, RAID 3:

— Parity control at a lower (than block) level.

— Rarely employed.

A0

BO

co

Al

Bl

PC

A2

PB

PA

B2

C1

Cc2



RAID (Redundant Array of Inexpensive Disks)

 RAID Administration, command mdadm:

— Creation of a RAID device:
 # mdadm --create /dev/mdO --verbose --level=0 --raid-devices=2 /dev/sdb /dev/sdc2.
* First, disks must be partitioned (fdisk).
» Creation process can be monitored: # cat /proc/mdstat.

* Creates a RAID in /dev/md0. On it we can create a File System (or a LVM Physical Volume).

— Monitoring the RAID system:
* #cat /proc/mdstat.

* # mdadm --monitor [options] /dev/mdO0.

— Elimination (deactivation) of RAID:
» “Stop” device: # mdadm --stop /dev/mdO.

* Clean previous information from a RAID disk: # mdadm --zero-superblock /dev/sdX.



RAID (Redundant Array of Inexpensive Disks)

* Procedure for a disk failure:

— Assume a RAID5 system, still operative with a significant performance
degradation.

— Broken disk can be automatically restored:

1.

2
3
4.
5

Eliminate broken disk from RAID: # mdadm /dev/md0 —r /dev/sdcl.
Physically replace with another one (identical).

Create the partitions as in the original: # fdisk /dev/sdc.

Add it to the RAID device: # mdadm /dev/md0 —a /dev/sdc1.

Monitor the reconstruction process: # cat /proc/mdstat.

— We can simulate a disk failure:
e #mdadm /dev/md0 —f /dev/sdc1.

» All the process log information in /var/log/messages.



RAID (Redundant Array of Inexpensive Disks)

e Combination RAID + LVM:
— RAID must be implemented below LVM.

Physical Disks Partitions RAID Device Physical Volumens
(on RAID device)

e N

Dl /dev/md0 /dev/md0
/dev/sda /dev/sdal

~— | VGDA |

C > ‘ Raw physical ‘
/dev/sdb /dev/sdb1 content

~— £ RAID O RAID O

3

— g

] /dev/md1 /dev/md1
/dev/sdc /dev/sdcl

| VGDA |
\\5___________________,,/
Raw physical

C content
[dev/sde /dev/sdel | | VGDA |

\\5_________________~_,,/

Raw physical

C content

/dev/sdf /dev/sdfl
RAID 5 RAID 5
\\_________________________,—/

Group Volume

\,
N
.

-~ s

pred

N,




Index

e Backup.



Backup

 RAID + journaling not enough to provide 100% availability.

* Essential: backup copies:
— Solution for multiple unexpected events, both HW and SW.

— Mainly “the users”.

e Performed with dedicated resources:
— Hard Disks:

* Exclusively dedicated to backup.
* SAN Servers.

* Disk hierarchy with decreasing performance.

Level 1

— Tapes (or other magnetic support):

* LTO (Linear Tape-Open) (LTO-6 Ultrium):
— 2.5TB capacity, 160MB/s transference.

e Others: SAIT, AIT.

Level 2




Backup

e Backup Policy: configured according to our requirements:

— What do we need to store?:
» Data from users/apps/system.

» Select the critical parts of the system.

— When do we want to backup?:
* Do not overload systems with useless work.
* Depends on the kind of utilization and the part of the file system.

* Employ programming/automatization mechanisms (cron).

— Where do we want to backup?:

 Efficient labeling and organization of storage support (tapes).

— Always check that the backup has finished correctly (recuperation test).



Backup

* Basic system tool: dump/restore:

Present in most UNIX/Linux systems.

Many advanced tools employ this as starting point.

Designed to work at File System level:

* Can copy any kind of file (even devices).

* Preserves permissions, property and timestamps of files.

“sparse” files managed correctly.

Backups are incremental (backup levels):

Only available for the whole File Systems.
Level O: (FULL) copies all files from scratch.
Level 1: (INCREMENTAL) adds to the previous backup only modified files.

Level N: adds to the previous backup the files modified since the last time a “less
than N” backup was performed.

The information about backup history is stored in /etc/dumpdates.



Backup

* Creation of backups with dump command:

— Syntax: dump -<level> <options> -f [destination] [File system]:
* Level: int from O (FULL) to 9.
» Option —f: destination of backup file. Can be a device file (tape).
* Option —u: update the file /fetc/dumpdates after the backup.

* Example: # dump -Ou -f /dev/tape /.
* Recovery with restore command:
— restore —C: compare the stored File system (from /).

— restore —i: interactive operation with backup:
e add/delete: files/dirs to the restoration list.
» cd/Is/pwd: move through the backup FS (Files with * are in the restoration list).
 extract: restore the files from the list.

— restore —r: restore the whole file system:

* #restore —r —f <backup_file> <destination>.



Backup

* Alternative tools (rudimentary):

— Command tar (package):
e Can understand devices without file system.

* Can be completed with compression tools (bzip, zip).

— Command dd:
e #ddif=/dev/sda2 of=/dev/tape.

— Command cp —a: optimal to replicate disk content (at file level).
* Advanced tools for distributed systems backup:

— Data Protector (HP): many different plataforms, relatively cheap, can be
integrated with HP OpenView.

— Legato/Tivoli (IBM): expensive licensing.

— Bacula: GNU alternative to non-free software.

rdump + rrestore + proper HW + scripting = enough



